Erokhin Sergey, Berkov Dmitry, Ito Masaaki, Kato Akira, Yano Masao, Michels Andreas
General Numerics Research Lab, Moritz-von-Rohr-Straße 1A, D-07745 Jena, Germany.
J Phys Condens Matter. 2018 Mar 28;30(12):125802. doi: 10.1088/1361-648X/aaaf58.
We demonstrate how micromagnetic simulations can be employed in order to characterize and analyze the magnetic microstructure of nanocomposites. For the example of nanocrystalline Nd-Fe-B, which is a potential material for future permanent-magnet applications, we have compared three different models for the micromagnetic analysis of this material class: (i) a description of the nanocomposite microstructure in terms of Stoner-Wohlfarth particles with and without the magnetodipolar interaction; (ii) a model based on the core-shell representation of the nanograins; (iii) the latter model including a contribution of superparamagnetic clusters. The relevant parameter spaces have been systematically scanned with the aim to establish which micromagnetic approach can most adequately describe experimental data for this material. According to our results, only the last, most sophisticated model is able to provide an excellent agreement with the measured hysteresis loop. The presented methodology is generally applicable to multiphase magnetic nanocomposites and it highligths the complex interrelationship between the microstructure, magnetic interactions, and the macroscopic magnetic properties.
我们展示了如何利用微磁模拟来表征和分析纳米复合材料的磁微结构。以纳米晶钕铁硼为例,它是未来永磁应用的潜在材料,我们比较了三种不同的模型用于对这类材料进行微磁分析:(i) 用斯托纳 - 沃尔法特粒子描述纳米复合材料微结构,考虑有无磁偶极相互作用;(ii) 基于纳米晶粒核壳表示的模型;(iii) 包含超顺磁团簇贡献的后一种模型。为确定哪种微磁方法能最充分地描述该材料的实验数据,已系统扫描了相关参数空间。根据我们的结果,只有最后一个最复杂的模型能够与测量的磁滞回线达成极佳的一致性。所提出的方法通常适用于多相磁性纳米复合材料,它突出了微结构、磁相互作用和宏观磁性能之间复杂的相互关系。