Suppr超能文献

一维长程伊辛自旋玻璃中基态亚稳态的平凡性。

Triviality of the ground-state metastate in long-range Ising spin glasses in one dimension.

机构信息

Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120, USA.

出版信息

Phys Rev E. 2018 Jan;97(1-1):012134. doi: 10.1103/PhysRevE.97.012134.

Abstract

We consider the one-dimensional model of a spin glass with independent Gaussian-distributed random interactions, which have mean zero and variance 1/|i-j|^{2σ}, between the spins at sites i and j for all i≠j. It is known that, for σ>1, there is no phase transition at any nonzero temperature in this model. We prove rigorously that, for σ>3/2, any translation-covariant Newman-Stein metastate for the ground states (i.e., the frequencies with which distinct ground states are observed in finite-size samples in the limit of infinite size, for given disorder) is trivial and unique. In other words, for given disorder and asymptotically at large sizes, the same ground state, or its global spin flip, is obtained (almost) always. The proof consists of two parts: One is a theorem (based on one by Newman and Stein for short-range two-dimensional models), valid for all σ>1, that establishes triviality under a convergence hypothesis on something similar to the energies of domain walls and the other (based on older results for the one-dimensional model) establishes that the hypothesis is true for σ>3/2. In addition, we derive heuristic scaling arguments and rigorous exponent inequalities which tend to support the validity of the hypothesis under broader conditions. The constructions of various metastates are extended to all values σ>1/2. Triviality of the metastate in bond-diluted power-law models for σ>1 is proved directly.

摘要

我们考虑一维的自旋玻璃模型,其中独立的高斯随机相互作用的平均值为零,方差为 1/|i-j|^{2σ},其中 i 和 j 是不同的位置。已知在这个模型中,对于任何非零温度,σ>1 时没有相变。我们严格证明,对于 σ>3/2,任何平移协变的纽曼-斯坦 metastate 对于基态(即在无限大尺寸的有限尺寸样本中观察到不同基态的频率,对于给定的无序)都是平凡的且唯一的。换句话说,对于给定的无序和渐近大尺寸,总是得到相同的基态,或者它的全局自旋翻转(几乎)总是得到。证明由两部分组成:一部分是一个定理(基于纽曼和斯坦为短程二维模型所做的定理),对于所有 σ>1,在类似于畴壁能量的收敛假设下证明了平凡性,另一部分(基于一维模型的旧结果)证明了对于 σ>3/2,假设是正确的。此外,我们还推导出了启发式标度论点和严格的指数不等式,这些论点和不等式倾向于在更广泛的条件下支持假设的有效性。各种 metastate 的构造扩展到所有 σ>1/2 的值。直接证明了 σ>1 时键稀释幂律模型中 metastate 的平凡性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验