Suppr超能文献

溶菌酶溶液的短时间动力学:具有竞争短程吸引力和长程排斥力的实验和理论。

Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory.

机构信息

Forschungszentrum Jülich GmbH, ICS-3-Soft Condensed Matter, 52428 Jülich, Germany and Jülich-Aachen Research Alliance JARA-Soft Matter, 52425 Jülich, Germany.

Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA and Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA.

出版信息

J Chem Phys. 2018 Feb 14;148(6):065101. doi: 10.1063/1.5016517.

Abstract

Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi-quantitative predictions of diffusion properties and viscosity of solutions of globular proteins are possible given only the equilibrium structure factor of proteins. Furthermore, we explore the effects of changing the attraction strength on H(q) and η.

摘要

最近,人们从实验上广泛研究了低盐溶菌酶蛋白溶液中微观结构有序性的非典型静态特征,并基于短程吸引加长程排斥(SALR)相互作用势从理论上进行了解释。然而,蛋白质动力学及其与非典型 SALR 结构的关系仍有待证明。在这里,我们测试了预测各向同性颗粒悬浮液中扩散性质和粘度的半解析理论方法在低盐溶菌酶蛋白溶液中的适用性。利用先前从静态结构因子测量中获得的相互作用势参数,我们对代表七个实验溶菌酶样品的蒙特卡罗模拟结果表明,它们要么处于分散的流体状态,要么处于随机渗透状态。自洽的 Zerah-Hansen 方案用于描述静态结构因子 S(q),这是我们计算短时间流体力学函数 H(q)和零频粘度 η的输入。这些方案以近似的水平考虑了流体动力学相互作用。作为波数 q 的函数的 H(q)的理论预测与使用中子自旋回波测量在小蛋白浓度下获得的实验结果定量吻合。在较高浓度下,尽管计算的流体力学函数被高估,但仍保持定性一致。我们将较高浓度和较低温度下的差异归因于颗粒和团簇的形状和相互作用各向异性、溶菌酶颗粒表面的斑片状和团簇内动力学引起的平移-旋转扩散耦合,这些特征未包含在我们的简单球形粒子模型中。即使在较高浓度下,理论上对溶液粘度 η 的预测也与我们的实验数据定性一致。我们证明,仅根据蛋白质的平衡结构因子,就可以对球形蛋白质溶液的扩散性质和粘度进行半定量预测。此外,我们还探讨了改变吸引力强度对 H(q)和 η 的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验