Suppr超能文献

柱效的随机观点。

A stochastic view on column efficiency.

作者信息

Gritti Fabrice

机构信息

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA.

出版信息

J Chromatogr A. 2018 Mar 9;1540:55-67. doi: 10.1016/j.chroma.2018.02.005. Epub 2018 Feb 9.

Abstract

A stochastic model of transcolumn eddy dispersion along packed beds was derived. It was based on the calculation of the mean travel time of a single analyte molecule from one radial position to another. The exchange mechanism between two radial positions was governed by the transverse dispersion of the analyte across the column. The radial velocity distribution was obtained by flow simulations in a focused-ion-beam scanning electron microscopy (FIB-SEM) based 3D reconstruction from a 2.1 mm × 50 mm column packed with 2 μm BEH-C particles. Accordingly, the packed bed was divided into three coaxial and uniform zones: (1) a 1.4 particle diameter wide, ordered, and loose packing at the column wall (velocity u), (2) an intermediate 130 μm wide, random, and dense packing (velocity u), and (3) the bulk packing in the center of the column (velocity u). First, the validity of this proposed stochastic model was tested by adjusting the predicted to the observed reduced van Deemter plots of a 2.1 mm × 50 mm column packed with 2 μm BEH-C fully porous particles (FPPs). An excellent agreement was found for u = 0.93u, a result fully consistent with the FIB-SEM observation (u = 0.95u). Next, the model was used to measure u = 0.94u for 2.1 mm × 100 mm column packed with 1.6 μm Cortecs-C superficially porous particles (SPPs). The relative velocity bias across columns packed with SPPs is then barely smaller than that observed in columns packed with FPPs (+6% versus + 7%). u=1.8u is measured for a 75 μm × 1 m capillary column packed with 2 μm BEH-C particles. Despite this large wall-to-center velocity bias (+80%), the presence of the thin and ordered wall packing layer has no negative impact on the kinetic performance of capillary columns. Finally, the stochastic model of long-range eddy dispersion explains why analytical (2.1-4.6 mm i.d.) and capillary (<400 μm i.d.) columns can all be packed efficiently (1 <h< 2) with particles of size larger than 2 μm. In contrast, the model predicts that 0.4-1.2 mm i.d. columns and 2.1 mm i.d. columns cannot be packed well (h>3) with sub-2 μm particles and with 1 μm particles, respectively.

摘要

推导了沿填充床的柱间涡流扩散随机模型。它基于单个分析物分子从一个径向位置到另一个径向位置的平均传播时间的计算。两个径向位置之间的交换机制由分析物在柱中的横向扩散控制。通过在基于聚焦离子束扫描电子显微镜(FIB-SEM)的三维重建中对流动进行模拟,从填充有2μm BEH-C颗粒的2.1mm×50mm柱中获得径向速度分布。相应地,填充床被分为三个同轴且均匀的区域:(1)柱壁处1.4个颗粒直径宽、有序且疏松的填充层(速度u),(2)中间130μm宽、随机且致密的填充层(速度u),以及(3)柱中心的整体填充层(速度u)。首先,通过将预测值与填充有2μm BEH-C全多孔颗粒(FPPs)的2.1mm×50mm柱的观测范德姆特曲线进行调整,测试了该随机模型的有效性。发现对于u = 0.93u时吻合度极佳,该结果与FIB-SEM观测结果(u = 0.95u)完全一致。接下来,该模型用于测量填充有1.6μm Cortecs-C表面多孔颗粒(SPPs)的2.1mm×100mm柱的u = 0.94u。那么,填充有SPPs的柱之间的相对速度偏差仅略小于填充有FPPs的柱中观测到的偏差(分别为+6%和+7%)。对于填充有2μm BEH-C颗粒的75μm×1m毛细管柱,测量得到u = 1.8u。尽管存在较大的壁到中心速度偏差(+80%),但薄且有序的壁填充层的存在对毛细管柱的动力学性能没有负面影响。最后,长程涡流扩散随机模型解释了为什么分析型(内径2.1 - 4.6mm)和毛细管型(内径<400μm)柱都可以用尺寸大于2μm的颗粒高效填充(1 < h < 2)。相比之下,该模型预测内径0.4 - 1.2mm的柱和内径2.1mm的柱分别不能用亚2μm颗粒和1μm颗粒良好填充(h > 3)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验