Suppr超能文献

分类模式的形式化:信息系统工程中的分类建模调查

Formalization of the classification pattern: survey of classification modeling in information systems engineering.

作者信息

Partridge Chris, de Cesare Sergio, Mitchell Andrew, Odell James

机构信息

1Brunel University London, London, UK.

BORO Solutions, London, UK.

出版信息

Softw Syst Model. 2018;17(1):167-203. doi: 10.1007/s10270-016-0521-5. Epub 2016 Apr 16.

Abstract

Formalization is becoming more common in all stages of the development of information systems, as a better understanding of its benefits emerges. Classification systems are ubiquitous, no more so than in domain modeling. The classification pattern that underlies these systems provides a good case study of the move toward formalization in part because it illustrates some of the barriers to formalization, including the formal complexity of the pattern and the ontological issues surrounding the "one and the many." Powersets are a way of characterizing the (complex) formal structure of the classification pattern, and their formalization has been extensively studied in mathematics since Cantor's work in the late nineteenth century. One can use this formalization to develop a useful benchmark. There are various communities within information systems engineering (ISE) that are gradually working toward a formalization of the classification pattern. However, for most of these communities, this work is incomplete, in that they have not yet arrived at a solution with the expressiveness of the powerset benchmark. This contrasts with the early smooth adoption of powerset by other information systems communities to, for example, formalize relations. One way of understanding the varying rates of adoption is recognizing that the different communities have different historical baggage. Many conceptual modeling communities emerged from work done on database design, and this creates hurdles to the adoption of the high level of expressiveness of powersets. Another relevant factor is that these communities also often feel, particularly in the case of domain modeling, a responsibility to explain the semantics of whatever formal structures they adopt. This paper aims to make sense of the formalization of the classification pattern in ISE and surveys its history through the literature, starting from the relevant theoretical works of the mathematical literature and gradually shifting focus to the ISE literature. The literature survey follows the evolution of ISE's understanding of how to formalize the classification pattern. The various proposals are assessed using the classical example of classification; the Linnaean taxonomy formalized using powersets as a benchmark for formal expressiveness. The broad conclusion of the survey is that (1) the ISE community is currently in the early stages of the process of understanding how to formalize the classification pattern, particularly in the requirements for expressiveness exemplified by powersets, and (2) that there is an opportunity to intervene and speed up the process of adoption by clarifying this expressiveness. Given the central place that the classification pattern has in domain modeling, this intervention has the potential to lead to significant improvements.

摘要

随着对形式化益处的理解日益深入,形式化在信息系统开发的各个阶段正变得越来越普遍。分类系统无处不在,在领域建模中更是如此。构成这些系统基础的分类模式为走向形式化提供了一个很好的案例研究,部分原因在于它说明了形式化的一些障碍,包括该模式的形式复杂性以及围绕“一与多”的本体论问题。幂集是刻画分类模式(复杂)形式结构的一种方式,自19世纪后期康托尔的工作以来,其形式化在数学中得到了广泛研究。人们可以利用这种形式化来开发一个有用的基准。信息系统工程(ISE)中有多个群体正在逐步致力于分类模式的形式化。然而,对于这些群体中的大多数来说,这项工作并不完整,因为他们尚未得出具有幂集基准表现力的解决方案。这与其他信息系统群体早期顺利采用幂集(例如用于形式化关系)形成对比。理解不同采用率的一种方式是认识到不同群体有不同的历史包袱。许多概念建模群体源自数据库设计方面的工作,这给采用幂集的高表现力带来了障碍。另一个相关因素是,这些群体通常也觉得,特别是在领域建模的情况下,有责任解释他们采用的任何形式结构的语义。本文旨在阐明ISE中分类模式的形式化,并通过文献回顾其历史,从数学文献的相关理论工作开始,逐渐将重点转向ISE文献。文献综述追踪了ISE对如何形式化分类模式的理解的演变。使用分类的经典例子对各种提议进行评估;以用幂集形式化的林奈分类法作为形式表现力的基准。综述的广泛结论是:(1)ISE群体目前正处于理解如何形式化分类模式这一过程的早期阶段,特别是在以幂集为例的表现力要求方面;(2)有机会通过阐明这种表现力来进行干预并加速采用过程。鉴于分类模式在领域建模中的核心地位,这种干预有可能带来显著改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e320/5807468/cf021fc5ce29/10270_2016_521_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验