Suppr超能文献

类蜀黍的生态地理学

Ecogeography of teosinte.

作者信息

Sánchez González José de Jesús, Ruiz Corral José Ariel, García Guillermo Medina, Ojeda Gabriela Ramírez, Larios Lino De la Cruz, Holland James Brendan, Medrano Roberto Miranda, García Romero Giovanni Emmanuel

机构信息

Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, Jalisco, Mexico.

Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Centro de Investigación Regional del Pacífico Centro, Campo Experimental Centro Altos de Jalisco, Guadalajara, Jalisco, Mexico.

出版信息

PLoS One. 2018 Feb 16;13(2):e0192676. doi: 10.1371/journal.pone.0192676. eCollection 2018.

Abstract

Adaptation of crops to climate change has motivated an increasing interest in the potential value of novel traits from wild species; maize wild relatives, the teosintes, harbor traits that may be useful to maize breeding. To study the ecogeographic distribution of teosinte we constructed a robust database of 2363 teosinte occurrences from published sources for the period 1842-2016. A geographical information system integrating 216 environmental variables was created for Mexico and Central America and was used to characterize the environment of each teosinte occurrence site. The natural geographic distribution of teosinte extends from the Western Sierra Madre of the State of Chihuahua, Mexico to the Pacific coast of Nicaragua and Costa Rica, including practically the entire western part of Mesoamerica. The Mexican annuals Zea mays ssp. parviglumis and Zea mays ssp. mexicana show a wide distribution in Mexico, while Zea diploperennis, Zea luxurians, Zea perennis, Zea mays ssp. huehuetenangensis, Zea vespertilio and Zea nicaraguensis had more restricted and distinct ranges, representing less than 20% of the total occurrences. Only 11.2% of teosinte populations are found in Protected Natural Areas in Mexico and Central America. Ecogeographical analysis showed that teosinte can cope with extreme levels of precipitation and temperatures during growing season. Modelling teosinte geographic distribution demonstrated congruence between actual and potential distributions; however, some areas with no occurrences appear to be within the range of adaptation of teosintes. Field surveys should be prioritized to such regions to accelerate the discovery of unknown populations. Potential areas for teosintes Zea mays ssp. mexicana races Chalco, Nobogame, and Durango, Zea mays ssp. huehuetenangensis, Zea luxurians, Zea diploperennis and Zea nicaraguensis are geographically separated; however, partial overlapping occurs between Zea mays ssp. parviglumis and Zea perennis, between Zea mays ssp. parviglumis and Zea diploperennis, and between Zea mays ssp. mexicana race Chalco and Zea mays ssp. mexicana race Central Plateau. Assessing priority of collecting for conservation showed that permanent monitoring programs and in-situ conservation projects with participation of local farmer communities are critically needed; Zea mays ssp. mexicana (races Durango and Nobogame), Zea luxurians, Zea diploperennis, Zea perennis and Zea vespertilio should be considered as the highest priority taxa.

摘要

作物对气候变化的适应激发了人们对野生物种新性状潜在价值的兴趣日益浓厚;玉米的野生近缘种大刍草具有一些可能对玉米育种有用的性状。为了研究大刍草的生态地理分布,我们从1842年至2016年期间的已发表资料中构建了一个包含2363个大刍草出现地点的强大数据库。针对墨西哥和中美洲创建了一个整合216个环境变量的地理信息系统,并用于描述每个大刍草出现地点的环境特征。大刍草的自然地理分布范围从墨西哥奇瓦瓦州的西马德雷山脉延伸至尼加拉瓜和哥斯达黎加的太平洋沿岸,几乎涵盖了中美洲的整个西部。墨西哥一年生的玉米亚种小颖玉米和墨西哥玉米在墨西哥分布广泛,而二倍体多年生玉米、繁茂玉米、多年生玉米、玉米亚种韦韦特纳南戈玉米、蝙蝠玉米和尼加拉瓜玉米的分布范围则更为有限且独特,占总出现地点的比例不到20%。在墨西哥和中美洲的自然保护区中仅发现11.2%的大刍草种群。生态地理分析表明,大刍草能够应对生长季节极端的降水和温度水平。对大刍草地理分布进行建模显示实际分布与潜在分布一致;然而,一些没有出现大刍草的区域似乎处于大刍草的适应范围内。应优先对这些区域进行实地调查,以加速发现未知种群。大刍草中,墨西哥玉米亚种查尔科、诺沃加梅和杜兰戈、韦韦特纳南戈玉米、繁茂玉米、二倍体多年生玉米和尼加拉瓜玉米的潜在区域在地理上是分开的;然而,小颖玉米和多年生玉米之间、小颖玉米和二倍体多年生玉米之间以及墨西哥玉米亚种查尔科和墨西哥玉米亚种中央高原之间存在部分重叠。评估保护收集的优先级表明,迫切需要有当地农民社区参与的永久监测计划和原地保护项目;墨西哥玉米亚种(杜兰戈和诺沃加梅品种)、繁茂玉米、二倍体多年生玉米、多年生玉米和蝙蝠玉米应被视为优先级最高的分类群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5325/5815594/d2b115e5ca48/pone.0192676.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验