Department of Laboratory Medicine, Translational Metabolic Laboratory (TML), Radboud University Medical Center, Geert Groote Plein Zuid 10, 6525, GA, Nijmegen, The Netherlands.
Department of Human Genetics, Donders Institute of Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
J Inherit Metab Dis. 2018 May;41(3):337-353. doi: 10.1007/s10545-017-0131-6. Epub 2018 Feb 16.
The implementation of whole-exome sequencing in clinical diagnostics has generated a need for functional evaluation of genetic variants. In the field of inborn errors of metabolism (IEM), a diverse spectrum of targeted biochemical assays is employed to analyze a limited amount of metabolites. We now present a single-platform, high-resolution liquid chromatography quadrupole time of flight (LC-QTOF) method that can be applied for holistic metabolic profiling in plasma of individual IEM-suspected patients. This method, which we termed "next-generation metabolic screening" (NGMS), can detect >10,000 features in each sample. In the NGMS workflow, features identified in patient and control samples are aligned using the "various forms of chromatography mass spectrometry (XCMS)" software package. Subsequently, all features are annotated using the Human Metabolome Database, and statistical testing is performed to identify significantly perturbed metabolite concentrations in a patient sample compared with controls. We propose three main modalities to analyze complex, untargeted metabolomics data. First, a targeted evaluation can be done based on identified genetic variants of uncertain significance in metabolic pathways. Second, we developed a panel of IEM-related metabolites to filter untargeted metabolomics data. Based on this IEM-panel approach, we provided the correct diagnosis for 42 of 46 IEMs. As a last modality, metabolomics data can be analyzed in an untargeted setting, which we term "open the metabolome" analysis. This approach identifies potential novel biomarkers in known IEMs and leads to identification of biomarkers for as yet unknown IEMs. We are convinced that NGMS is the way forward in laboratory diagnostics of IEMs.
全外显子测序在临床诊断中的应用产生了对遗传变异进行功能评估的需求。在先天性代谢缺陷(IEM)领域,采用了多种靶向生化分析方法来分析有限数量的代谢物。我们现在提出了一种单一平台、高分辨率液相色谱四极杆飞行时间(LC-QTOF)方法,可用于个体 IEM 疑似患者的血浆进行整体代谢谱分析。我们将这种方法称为“下一代代谢筛选”(NGMS),可以在每个样本中检测到>10000 种特征。在 NGMS 工作流程中,使用“各种形式的色谱质谱联用(XCMS)”软件包对患者和对照样本中的特征进行对齐。然后,使用人类代谢组数据库对所有特征进行注释,并进行统计测试,以确定与对照相比患者样本中代谢物浓度是否显著失调。我们提出了三种主要方法来分析复杂的、非靶向的代谢组学数据。首先,可以基于代谢途径中不确定意义的遗传变异进行靶向评估。其次,我们开发了一组与 IEM 相关的代谢物来筛选非靶向代谢组学数据。基于这种 IEM 面板方法,我们对 46 种 IEM 中的 42 种提供了正确的诊断。作为最后一种方法,可以在非靶向设置中分析代谢组学数据,我们称之为“打开代谢组”分析。这种方法在已知的 IEM 中识别出潜在的新型生物标志物,并导致鉴定出未知的 IEM 生物标志物。我们相信 NGMS 是 IEM 实验室诊断的未来发展方向。