Suppr超能文献

通过反相乳液聚合制备可调谐聚(甲基丙烯酸-co-丙烯酰胺)纳米粒子。

Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.

机构信息

McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas.

Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, Texas.

出版信息

J Biomed Mater Res A. 2018 Jun;106(6):1677-1686. doi: 10.1002/jbm.a.36371. Epub 2018 Mar 6.

Abstract

Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018.

摘要

环境响应型生物材料在生物传感器和药物输送载体的设计中发挥了关键作用。它们对外界刺激(如温度或 pH 值)的物理响应可以转换信号或触发药物释放。在这项工作中,我们设计了一种稳健、高度可调的 pH 响应纳米级水凝胶系统。我们通过反相乳液聚合展示了聚(甲基丙烯酸-co-丙烯酰胺)水凝胶纳米粒子的设计和特性,该纳米粒子通过亚甲基双丙烯酰胺交联。聚合参数(即单体和表面活性剂的种类和浓度)和聚合物组成(即离子和交联单体的重量分数)对纳米粒子的整体和环境响应性能的影响。我们生成了均匀的球形纳米粒子,通过交联的调节,在酸性环境中相对于坍塌状态,其体积膨胀率为 1.77-4.07。我们相信我们的系统有潜力作为靶向、可注射亲水治疗剂的基础平台。然而,同样重要的是,我们希望我们对聚合和纯化条件对纳米粒子组成、形态和性能的个别影响的系统分析可以用于加速替代亲水纳米材料的开发,以满足一系列生物医学应用的需求。© 2018 威利父子公司。J 生物医学材料研究部分 A:106A:1677-1686,2018。

相似文献

1
Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.
J Biomed Mater Res A. 2018 Jun;106(6):1677-1686. doi: 10.1002/jbm.a.36371. Epub 2018 Mar 6.
5
Bioresponsive nanohydrogels based on HEAA and NIPA for poorly soluble drugs delivery.
Int J Pharm. 2014 Aug 15;470(1-2):107-19. doi: 10.1016/j.ijpharm.2014.05.002. Epub 2014 May 9.
6
Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system.
Eur J Pharm Sci. 2014 Oct 1;62:86-95. doi: 10.1016/j.ejps.2014.05.005. Epub 2014 May 15.
7
Water-in-oil Pickering emulsion polymerization of N-isopropyl acrylamide using starch-based nanoparticles as emulsifier.
Int J Biol Macromol. 2019 Jun 15;131:1032-1037. doi: 10.1016/j.ijbiomac.2019.03.107. Epub 2019 Mar 18.
8
Morphology of poly(methacrylic acid)/poly(N-isopropyl acrylamide) interpenetrating polymeric networks.
J Biomater Sci Polym Ed. 2002;13(5):511-25. doi: 10.1163/15685620260178373.
10
Microfluidic conceived Trojan microcarriers for oral delivery of nanoparticles.
Int J Pharm. 2015 Sep 30;493(1-2):7-15. doi: 10.1016/j.ijpharm.2015.06.028. Epub 2015 Jun 23.

引用本文的文献

1
Paracellular Delivery of Protein Drugs with Smart EnteroPatho Nanoparticles.
ACS Nano. 2024 Aug 13;18(32):21038-21051. doi: 10.1021/acsnano.4c02116. Epub 2024 Aug 3.
3
In Situ Neutralization and Detoxification of LPS to Attenuate Hyperinflammation.
Adv Sci (Weinh). 2023 Sep;10(26):e2302950. doi: 10.1002/advs.202302950. Epub 2023 Jul 10.
5
Self-Therapeutic Nanomaterials: Applications in Biology and Medicine.
Mater Today (Kidlington). 2023 Jan-Feb;62:190-224. doi: 10.1016/j.mattod.2022.11.007. Epub 2022 Nov 29.
6
Research progress of stimulus-responsive antibacterial materials for bone infection.
Front Bioeng Biotechnol. 2022 Dec 23;10:1069932. doi: 10.3389/fbioe.2022.1069932. eCollection 2022.
7
Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles.
Nanomaterials (Basel). 2022 Feb 8;12(3):576. doi: 10.3390/nano12030576.
8
Advanced biomedical hydrogels: molecular architecture and its impact on medical applications.
Regen Biomater. 2021 Nov 9;8(6):rbab060. doi: 10.1093/rb/rbab060. eCollection 2021 Dec.
9
QCM-D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels.
J Appl Polym Sci. 2020 Jul 5;137(25). doi: 10.1002/app.48655. Epub 2019 Oct 31.
10
Polymer Composition Primarily Determines the Protein Recognition Characteristics of Molecularly Imprinted Hydrogels.
J Mater Chem B. 2020 Sep 14;8(34):7685-7695. doi: 10.1039/D0TB01627F. Epub 2020 Jul 22.

本文引用的文献

2
Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics.
Eur J Pharm Biopharm. 2016 Nov;108:196-213. doi: 10.1016/j.ejpb.2016.09.007. Epub 2016 Sep 12.
4
Enzyme- and pH-Responsive Microencapsulated Nanogels for Oral Delivery of siRNA to Induce TNF-α Knockdown in the Intestine.
Biomacromolecules. 2016 Mar 14;17(3):788-97. doi: 10.1021/acs.biomac.5b01518. Epub 2016 Feb 11.
5
Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination.
J Control Release. 2016 Oct 28;240:332-348. doi: 10.1016/j.jconrel.2016.01.020. Epub 2016 Jan 13.
7
Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis.
Acc Chem Res. 2015 May 19;48(5):1474-84. doi: 10.1021/acs.accounts.5b00068. Epub 2015 May 7.
8
Active targeting of tumors through conformational epitope imprinting.
Angew Chem Int Ed Engl. 2015 Apr 20;54(17):5157-60. doi: 10.1002/anie.201412114. Epub 2015 Feb 26.
9
Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels.
Carbohydr Polym. 2015 Jan 22;115:617-28. doi: 10.1016/j.carbpol.2014.09.026. Epub 2014 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验