Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria 0001, South Africa.
J Environ Manage. 2018 Apr 15;212:357-366. doi: 10.1016/j.jenvman.2018.01.038. Epub 2018 Feb 22.
Response and growth kinetics of microbes in contaminated medium are useful indices for the screening and selection of tolerant species for eco-friendly bio-augmentative remediation of polluted environments. In this study, the heavy metal (HM) tolerance, bioaccumulation and growth kinetics of seven bacterial strains isolated from mining sites to 10 HMs (Cd, Hg, Ni, Al, Cr, Pb, Cu, Fe, Mn and Zn) at varied concentrations (25-600 mgL) were investigated. The isolates were phylogenetically (16S rRNA gene) related to Lysinibacillus macroides, Achromobacter spanius, Bacillus kochii, B. cereus, Klebsiella pneumoniae, Pseudomonas mosselii and P. nitroreducens. Metal tolerance, effects on lag phase duration and growth rates were assessed using the 96-well micro-titre method. Furthermore, metal bioaccumulation and quantities within cells were determined by transmission electron microscopy and electron dispersive x-ray analyses. Tolerance to Ni, Pb, Fe and Mn occurred at highest concentrations tested. Growth rates increased with increasing Fe concentrations, but reduced significantly (p < .05) with increasing Zn, Cu, Hg, Cd and Al. Significantly higher (p < .05) growth rates (compared to controls) was found with some isolates in Hg (25 mgL), Ni (100 mgL), Cr (150 mgL), Mn (600 mgL), Pb (100 mgL), Fe (600 mgL) and Al (50 mgL). Lag phase urations were isolate- and heavy metal-specific, in direct proportion to concentrations. A. spanius accumulated the most Mn and Zn, while B. cereus accumulated the most Cu. Metals accumulated intra-cellularly without cell morphology distortions. The isolates' multi-metal tolerance, intra-cellular metal bioaccumulation and growth kinetics suggest potentials for application in the synergetic biodegradation and bioremediation of polluted environments, especially HM-rich sites.
微生物在污染介质中的响应和生长动力学是筛选和选择耐受物种的有用指标,用于对受污染环境进行生态友好型生物增强修复。在这项研究中,从矿区分离出的 7 株细菌菌株对 10 种重金属(Cd、Hg、Ni、Al、Cr、Pb、Cu、Fe、Mn 和 Zn)在不同浓度(25-600mgL)下的重金属(HM)耐受性、生物积累和生长动力学进行了研究。这些分离株在系统发育上(16S rRNA 基因)与粘质沙雷氏菌、黄单胞菌、解淀粉芽孢杆菌、蜡样芽孢杆菌、肺炎克雷伯菌、莫斯氏假单胞菌和硝化还原假单胞菌有关。使用 96 孔微量滴定法评估金属耐受性、对迟滞期持续时间和生长速率的影响。此外,通过透射电子显微镜和电子分散 X 射线分析确定金属生物积累和细胞内数量。在测试的最高浓度下,对 Ni、Pb、Fe 和 Mn 表现出耐受性。随着 Fe 浓度的增加,生长速率增加,但随着 Zn、Cu、Hg、Cd 和 Al 的增加,生长速率显著(p<0.05)降低。与对照组相比,一些分离株在 Hg(25mgL)、Ni(100mgL)、Cr(150mgL)、Mn(600mgL)、Pb(100mgL)、Fe(600mgL)和 Al(50mgL)中发现生长速率显著(p<0.05)更高。迟滞期与分离株和重金属特异性相关,与浓度成正比。黄单胞菌积累了最多的 Mn 和 Zn,而蜡样芽孢杆菌积累了最多的 Cu。金属在细胞内积累而不改变细胞形态。这些分离株的多金属耐受性、细胞内金属生物积累和生长动力学表明它们在协同生物降解和受污染环境的生物修复,特别是富含重金属的地点方面具有应用潜力。