Suppr超能文献

多中心建立并验证一种用于医疗相关性艰难梭菌感染的简单预测指数。

Multicentre derivation and validation of a simple predictive index for healthcare-associated Clostridium difficile infection.

机构信息

Department of Pharmacy, Houston, TX, USA.

Department of System Quality, Houston Methodist Hospital, Houston, TX, USA.

出版信息

Clin Microbiol Infect. 2018 Nov;24(11):1190-1194. doi: 10.1016/j.cmi.2018.02.013. Epub 2018 Feb 16.

Abstract

OBJECTIVES

Clostridium difficile infection (CDI) is the most common cause of healthcare-associated infections in the United States. Despite well-established risk factors, little research has focused on use of these variables to identify a patient population at high risk for CDI to target with primary prevention strategies. A predictive index for healthcare-associated CDI could improve clinical care and guide research for primary prevention trials. Our objective was to develop a predictive index to identify patients at high risk for healthcare-associated CDI.

METHODS

We performed a secondary database analysis in a five-hospital health system in Houston, Texas. Our cohort consisted of 97 130 hospitalized patients admitted for more than 48 hours between October 2014 and September 2016. The derivation cohort consisted of the initial 80% of admissions (75 545 patients), with the remainder being used in the validation cohort.

RESULTS

CDI rates in the derivation and validation cohorts were 1.55% and 1.43%, respectively. Thirty-day predictors of CDI were increased number of high-risk antibiotics, Charlson comorbidity index score, age and receipt of a proton pump inhibitor. These variables were incorporated into a simple risk index with a score range of 0 to 10. The final model demonstrated good discrimination and calibration with the observed CDI incidence ranging from 0.1% to 20.4%.

CONCLUSIONS

We developed a predictive index for 30-day risk of healthcare-associated CDI using readily available and clinically useful variables. This simple predictive risk index may be used to improve clinical decision making and resource allocation for CDI stewardship initiatives, and guide research design.

摘要

目的

艰难梭菌感染(CDI)是美国最常见的医疗保健相关感染。尽管存在明确的危险因素,但很少有研究关注利用这些变量来确定 CDI 高风险患者人群,以便针对其实施初级预防策略。针对医疗保健相关 CDI 的预测指数可以改善临床护理,并为初级预防试验提供指导。我们的目的是开发一种预测指数,以确定医疗保健相关 CDI 风险较高的患者。

方法

我们在德克萨斯州休斯顿的一个五家医院医疗系统中进行了二次数据库分析。我们的队列包括 2014 年 10 月至 2016 年 9 月期间住院超过 48 小时的 97130 名住院患者。推导队列由最初 80%的入院患者(75545 名患者)组成,其余的患者用于验证队列。

结果

推导队列和验证队列的 CDI 发生率分别为 1.55%和 1.43%。CDI 的 30 天预测因素包括使用高危抗生素的数量增加、Charlson 合并症指数评分、年龄和质子泵抑制剂的使用。这些变量被纳入一个简单的风险指数,评分范围为 0 至 10。最终模型具有良好的区分度和校准度,观察到的 CDI 发生率范围为 0.1%至 20.4%。

结论

我们使用现成的和临床有用的变量开发了一种用于预测 30 天医疗保健相关 CDI 风险的预测指数。这种简单的预测风险指数可用于改善临床决策和 CDI 管理计划的资源分配,并指导研究设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验