Suppr超能文献

快速微波制备和高性能磁热材料(Mn,Fe)(P,Si)的组成调谐。

Rapid Microwave Preparation and Composition Tuning of the High-Performance Magnetocalorics (Mn,Fe)(P,Si).

机构信息

Center for Neutron Research, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.

BASF SE , 67056 Ludwigshafen, Germany.

出版信息

ACS Appl Mater Interfaces. 2018 Feb 28;10(8):7208-7213. doi: 10.1021/acsami.7b16988. Epub 2018 Feb 19.

Abstract

Rapid preparation utilizing assisted microwave heating permits significantly shorter preparation times for magnetocaloric compounds in the (Mn,Fe)(P,Si) family, specifically samples of (Mn,Fe)PSi with starting compositions of δ = 0, 0.06, and 0.12. To fully understand the effects of processing and composition changes on structure and properties, these materials are characterized using synchrotron powder diffraction, neutron powder diffraction, electron microprobe analysis (EMPA), X-ray fluorescence (XRF), and magnetic measurements. The diffraction analysis reveals that increasing δ results in decreasing amounts of the common Heusler (Mn,Fe)Si secondary phase. EMPA shows (Mn,Fe)(P,Si) in all three samples to be Mn and P rich, whereas XRF demonstrates that the bulk material is Mn rich yet P deficient. Increasing δ brings the Mn/Fe and P/Si ratios closer to their starting values. Measurements of magnetic properties show an increase in saturation magnetization and ordering temperature with increasing δ, consistent with the increase in Fe and Si contents. Increasing δ also results in a decrease in thermal hysteresis and an increase in magnetic entropy change, the latter reaching values close to what have been previously reported on samples that take much longer to prepare.

摘要

利用辅助微波加热进行快速制备,可以显著缩短(Mn,Fe)(P,Si)族磁热化合物的制备时间,特别是起始组成分别为 δ = 0、0.06 和 0.12 的(Mn,Fe)PSi 样品。为了充分了解处理和组成变化对结构和性能的影响,使用同步辐射粉末衍射、中子粉末衍射、电子探针分析(EMPA)、X 射线荧光(XRF)和磁测量对这些材料进行了表征。衍射分析表明,随着 δ 的增加,常见的 Heusler(Mn,Fe)Si 次生相的含量减少。EMPA 表明所有三种样品中的(Mn,Fe)(P,Si)都富含 Mn 和 P,而 XRF 表明块状材料富含 Mn 但缺乏 P。随着 δ 的增加,Mn/Fe 和 P/Si 比更接近其起始值。磁性能测量表明,随着 δ 的增加,饱和磁化强度和有序温度增加,这与 Fe 和 Si 含量的增加一致。随着 δ 的增加,热滞后减小,磁熵变化增加,后者的值接近以前报道的那些需要更长时间制备的样品的值。

相似文献

1
Rapid Microwave Preparation and Composition Tuning of the High-Performance Magnetocalorics (Mn,Fe)(P,Si).
ACS Appl Mater Interfaces. 2018 Feb 28;10(8):7208-7213. doi: 10.1021/acsami.7b16988. Epub 2018 Feb 19.
2
Synthetic Approach for (Mn,Fe)(Si,P) Magnetocaloric Materials: Purity, Structural, Magnetic, and Magnetocaloric Properties.
Inorg Chem. 2017 Mar 6;56(5):2827-2833. doi: 10.1021/acs.inorgchem.6b02912. Epub 2017 Feb 14.
3
Tuneable Giant Magnetocaloric Effect in (Mn,Fe)₂(P,Si) Materials by Co-B and Ni-B Co-Doping.
Materials (Basel). 2016 Dec 27;10(1):14. doi: 10.3390/ma10010014.
4
Magnetic Phase Diagram of the MnFePSi System.
Entropy (Basel). 2021 Dec 21;24(1):2. doi: 10.3390/e24010002.
5
Combinatorial pulsed laser deposition of Fe, Cr, Mn, and Ni-substituted SrTiO3 films on Si substrates.
ACS Comb Sci. 2012 Mar 12;14(3):179-90. doi: 10.1021/co2001185. Epub 2012 Feb 27.
6
Crystal structure and thermal expansion of Mn(1-x)Fe(x)Ge.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014 Aug;70(Pt 4):676-80. doi: 10.1107/S2052520614006611. Epub 2014 Jul 31.
7
Stabilization and study of SrFe(1-x)Mn(x)O2 oxides with infinite-layer structure.
Inorg Chem. 2011 Nov 7;50(21):10929-36. doi: 10.1021/ic201488w. Epub 2011 Oct 5.
8
Structural, magnetic, magnetocaloric and specific heat investigations on Mn doped PrCrO orthochromites.
J Phys Condens Matter. 2017 May 17;29(19):195802. doi: 10.1088/1361-648X/aa666c. Epub 2017 Mar 13.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验