Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
Phys Chem Chem Phys. 2013 May 14;15(18):6990-7. doi: 10.1039/c3cp50918d. Epub 2013 Apr 4.
Half-Heusler thermoelectrics offer the possibility to choose from a variety of non-toxic and earth-abundant elements. TiNiSn is of particular interest and - with its relatively high electrical conductivity and Seebeck coefficient - allows for optimization of its thermoelectric figure of merit, reaching values of up to 1 in heavily-doped and/or phase-segregated systems. In this contribution, we used an energy- and time-efficient process involving solid-state preparation in a commercial microwave oven and a fast consolidation technique, Spark Plasma Sintering, to prepare a series of Ni-rich TiNi1+xSn with small deviations from the half-Heusler composition. Spark Plasma Sintering plays an important role in the process by being a part of the synthesis of the material rather than solely a densification technique. Synchrotron powder X-ray diffraction and microprobe data confirm the presence of a secondary TiNi2Sn full-Heusler phase within the half-Heusler matrix. We observe a clear correlation between the amount of full-Heusler phase and the lattice thermal conductivity of the samples, resulting in decreasing total thermal conductivity with increasing TiNi2Sn fraction. This trend shows that phonons are scattered effectively as a result of the microstructure of the materials with full-Heusler inclusions in the size range of microns to tens of microns. The best performing samples with around 5% of TiNi2Sn phase exhibit maximum figures of merit of almost 0.6 between 750 K and 800 K which is an increase of ca. 35% compared to the zT of the parent compound TiNiSn.
半赫斯勒热电材料具有可从多种无毒且在地壳中含量丰富的元素中进行选择的可能性。TiNiSn 特别引人注目,由于其具有相对较高的电导率和塞贝克系数,可以对其热电优值进行优化,在掺杂量较大和/或相分离系统中可达 1 左右。在本研究中,我们使用了一种能量和时间效率高的工艺,包括在商用微波炉中进行固态制备以及快速固结技术——火花等离子烧结(Spark Plasma Sintering),来制备一系列偏离半赫斯勒组成的富 Ni 的 TiNi1+xSn。在该过程中,Spark Plasma Sintering 不仅是致密化技术,而且还是材料合成的一部分,发挥着重要作用。同步加速器粉末 X 射线衍射和微探针数据证实了半赫斯勒基体中存在次要的 TiNi2Sn 全赫斯勒相。我们观察到,全赫斯勒相的数量与样品的晶格热导率之间存在明显的相关性,导致总热导率随 TiNi2Sn 分数的增加而降低。这一趋势表明,由于材料的微结构中存在全赫斯勒相的夹杂物,其尺寸范围在微米到数十微米之间,声子得到了有效的散射。在具有约 5%TiNi2Sn 相的最佳性能样品中,在 750 K 至 800 K 之间的最大热电优值接近 0.6,与母体化合物 TiNiSn 的 zT 相比增加了约 35%。