Suppr超能文献

社交媒体使用与抑郁和焦虑症状:一项聚类分析。

Social Media Use and Depression and Anxiety Symptoms: A Cluster Analysis.

作者信息

Shensa Ariel, Sidani Jaime E, Dew Mary Amanda, Escobar-Viera César G, Primack Brian A

机构信息

Center for Research on Media, Technology, and Health, Division of General Internal Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA.

Departments of Psychiatry, Psychology, Epidemiology, and Biostatistics, University of Pittsburgh, Pittsburgh, PA.

出版信息

Am J Health Behav. 2018 Mar 1;42(2):116-128. doi: 10.5993/AJHB.42.2.11.

Abstract

OBJECTIVES

Individuals use social media with varying quantity, emotional, and behavioral at- tachment that may have differential associations with mental health outcomes. In this study, we sought to identify distinct patterns of social media use (SMU) and to assess associations between those patterns and depression and anxiety symptoms.

METHODS

In October 2014, a nationally-representative sample of 1730 US adults ages 19 to 32 completed an online survey. Cluster analysis was used to identify patterns of SMU. Depression and anxiety were measured using respective 4-item Patient-Reported Outcome Measurement Information System (PROMIS) scales. Multivariable logistic regression models were used to assess associations between clus- ter membership and depression and anxiety.

RESULTS

Cluster analysis yielded a 5-cluster solu- tion. Participants were characterized as "Wired," "Connected," "Diffuse Dabblers," "Concentrated Dabblers," and "Unplugged." Membership in 2 clusters - "Wired" and "Connected" - increased the odds of elevated depression and anxiety symptoms (AOR = 2.7, 95% CI = 1.5-4.7; AOR = 3.7, 95% CI = 2.1-6.5, respectively, and AOR = 2.0, 95% CI = 1.3-3.2; AOR = 2.0, 95% CI = 1.3-3.1, respectively).

CONCLUSIONS

SMU pattern characterization of a large population suggests 2 pat- terns are associated with risk for depression and anxiety. Developing educational interventions that address use patterns rather than single aspects of SMU (eg, quantity) would likely be useful.

摘要

目的

个体使用社交媒体的数量、情感和行为依恋程度各不相同,这可能与心理健康结果存在不同的关联。在本研究中,我们试图识别社交媒体使用(SMU)的不同模式,并评估这些模式与抑郁和焦虑症状之间的关联。

方法

2014年10月,一个由1730名年龄在19至32岁之间的美国成年人组成的全国代表性样本完成了一项在线调查。聚类分析用于识别SMU模式。使用各自的4项患者报告结果测量信息系统(PROMIS)量表测量抑郁和焦虑。多变量逻辑回归模型用于评估聚类成员与抑郁和焦虑之间的关联。

结果

聚类分析得出了一个5聚类解决方案。参与者被分为“网络成瘾者”“社交达人”“散漫涉猎者”“专注涉猎者”和“非网络使用者”。属于“网络成瘾者”和“社交达人”这两个聚类增加了抑郁和焦虑症状加重的几率(调整后的比值比分别为2.7,95%置信区间为1.5 - 4.7;3.7,95%置信区间为2.1 - 6.5,以及2.0,95%置信区间为1.3 - 3.2;2.0,95%置信区间为1.3 - 3.1)。

结论

对大量人群的SMU模式特征分析表明,有两种模式与抑郁和焦虑风险相关。开发针对使用模式而非SMU单一方面(如使用量)的教育干预措施可能会很有用。

相似文献

引用本文的文献

本文引用的文献

8
Social media use and anxiety in emerging adults.新兴成年人的社交媒体使用与焦虑
J Affect Disord. 2017 Jan 1;207:163-166. doi: 10.1016/j.jad.2016.08.040. Epub 2016 Oct 3.
10
The Association between Social Media Use and Eating Concerns among US Young Adults.社交媒体使用与美国青年进食问题的关联
J Acad Nutr Diet. 2016 Sep;116(9):1465-1472. doi: 10.1016/j.jand.2016.03.021. Epub 2016 May 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验