Suppr超能文献

利用全基因组关联研究的汇总统计数据推断表型之间的因果关系。

Inferring causal relationships between phenotypes using summary statistics from genome-wide association studies.

机构信息

Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.

Department of Global Biostatistics and Data Science, Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA.

出版信息

Hum Genet. 2018 Mar;137(3):247-255. doi: 10.1007/s00439-018-1876-1. Epub 2018 Feb 19.

Abstract

Genome-wide association studies (GWAS) have successfully identified numerous genetic variants associated with diverse complex phenotypes and diseases, and provided tremendous opportunities for further analyses using summary association statistics. Recently, Pickrell et al. developed a robust method for causal inference using independent putative causal SNPs. However, this method may fail to infer the causal relationship between two phenotypes when only a limited number of independent putative causal SNPs identified. Here, we extended Pickrell's method to make it more applicable for the general situations. We extended the causal inference method by replacing the putative causal SNPs with the lead SNPs (the set of the most significant SNPs in each independent locus) and tested the performance of our extended method using both simulation and empirical data. Simulations suggested that when the same number of genetic variants is used, our extended method had similar distribution of test statistic under the null model as well as comparable power under the causal model compared with the original method by Pickrell et al. But in practice, our extended method would generally be more powerful because the number of independent lead SNPs was often larger than the number of independent putative causal SNPs. And including more SNPs, on the other hand, would not cause more false positives. By applying our extended method to summary statistics from GWAS for blood metabolites and femoral neck bone mineral density (FN-BMD), we successfully identified ten blood metabolites that may causally influence FN-BMD. We extended a causal inference method for inferring putative causal relationship between two phenotypes using summary statistics from GWAS, and identified a number of potential causal metabolites for FN-BMD, which may provide novel insights into the pathophysiological mechanisms underlying osteoporosis.

摘要

全基因组关联研究(GWAS)已经成功地鉴定了许多与多种复杂表型和疾病相关的遗传变异,并提供了使用汇总关联统计数据进行进一步分析的巨大机会。最近,Pickrell 等人开发了一种使用独立假定因果 SNP 进行因果推断的稳健方法。然而,当仅鉴定出有限数量的独立假定因果 SNP 时,该方法可能无法推断两种表型之间的因果关系。在这里,我们扩展了 Pickrell 的方法使其更适用于一般情况。我们通过用先导 SNP(每个独立基因座中最显著的 SNP 集)替代假定因果 SNP 来扩展因果推断方法,并使用模拟数据和真实数据来测试我们扩展方法的性能。模拟表明,当使用相同数量的遗传变异时,与 Pickrell 等人的原始方法相比,我们的扩展方法在零假设下测试统计量的分布相似,在因果模型下的功效也相当。但在实际中,由于独立先导 SNP 的数量通常大于独立假定因果 SNP 的数量,因此我们的扩展方法通常会更有效。并且另一方面,包含更多的 SNP 不会导致更多的假阳性。通过将我们的扩展方法应用于血液代谢物和股骨颈骨矿物质密度(FN-BMD)GWAS 的汇总统计数据,我们成功鉴定出十个可能因果影响 FN-BMD 的血液代谢物。我们扩展了一种使用 GWAS 汇总统计数据推断两种表型之间假定因果关系的因果推断方法,并确定了一些潜在的 FN-BMD 因果代谢物,这可能为骨质疏松症的病理生理机制提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fda/6343668/305fa0e605b9/nihms944523f1.jpg

相似文献

本文引用的文献

4
Vitamin K and osteoporosis: Myth or reality?维生素 K 与骨质疏松症:是神话还是现实?
Metabolism. 2017 May;70:57-71. doi: 10.1016/j.metabol.2017.01.032. Epub 2017 Feb 4.
9
10
Approximately independent linkage disequilibrium blocks in human populations.人类群体中近似独立的连锁不平衡区域。
Bioinformatics. 2016 Jan 15;32(2):283-5. doi: 10.1093/bioinformatics/btv546. Epub 2015 Sep 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验