Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States.
J Am Chem Soc. 2018 Mar 7;140(9):3434-3442. doi: 10.1021/jacs.8b00174. Epub 2018 Feb 27.
Copper-sulfide nanocrystals can accommodate considerable densities of delocalized valence-band holes, introducing localized surface plasmon resonances (LSPRs) attractive for infrared plasmonic applications. Chemical control over nanocrystal shape, composition, and charge-carrier densities further broadens their scope of potential properties and applications. Although a great deal of control over LSPRs in these materials has been demonstrated, structural complexities have inhibited detailed descriptions of the microscopic chemical processes that transform them from nearly intrinsic to degenerately doped semiconductors. A comprehensive understanding of these transformations will facilitate use of these materials in emerging technologies. Here, we apply spectroelectrochemical potentiometry as a quantitative in situ probe of copper-sulfide nanocrystal Fermi-level energies ( E) during redox reactions that switch their LSPR bands on and off. We demonstrate spectroscopically indistinguishable LSPR bands in low-chalcocite copper-sulfide nanocrystals with and without lattice cation vacancies and show that cation vacancies are much more effective than surface anions at stabilizing excess free carriers. The appearance of the LSPR band, the shift in E, and the change in crystal structure upon nanocrystal oxidation are all fully reversible upon addition of outer-sphere reductants. These measurements further allow quantitative comparison of the coupled and stepwise oxidation/cation-vacancy-formation reactions associated with LSPRs in copper-sulfide nanocrystals, highlighting fundamental thermodynamic considerations relevant to technologies that rely on reversible or low-driving-force plasmon generation in semiconductor nanostructures.
硫化铜纳米晶体可以容纳相当密度的离域价带空穴,从而引入局域表面等离子体共振(LSPR),这对于红外等离子体应用很有吸引力。通过化学控制纳米晶体的形状、组成和载流子密度,可以进一步拓宽其潜在性质和应用的范围。尽管这些材料中的 LSPR 已经得到了很好的控制,但结构的复杂性抑制了对将它们从近本征半导体转变为简并掺杂半导体的微观化学过程的详细描述。全面了解这些转变将有助于这些材料在新兴技术中的应用。在这里,我们应用光谱电化学电势作为一种定量的原位探针,用于研究在氧化还原反应过程中,铜-硫化物纳米晶体费米能级(E)的变化,这些反应可以打开和关闭它们的 LSPR 带。我们证明了具有和不具有晶格阳离子空位的低辉铜矿型铜-硫化物纳米晶体的 LSPR 带在光谱上无法区分,并表明阳离子空位比表面阴离子更有效地稳定多余的自由载流子。LSPR 带的出现、E 的位移以及纳米晶体氧化时晶体结构的变化,在外球还原剂存在的情况下都是完全可逆的。这些测量进一步允许对与铜-硫化物纳米晶体中的 LSPR 相关的耦合和分步氧化/阳离子空位形成反应进行定量比较,突出了与依赖于半导体纳米结构中可逆或低驱动力等离子体产生的技术相关的基本热力学考虑因素。