文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于癌症免疫治疗的细胞焦亡比例可调纳米调节剂。

A pyroptosis proportion tunable nano-modulator for cancer immunotherapy.

作者信息

Chen Zhuang, Yang Zuo, Rao Zhiping, Luo Yi, Liu Weijing, Qiao Chaoqiang, Jia Qian, Yang Peng, Zhang Ruili, Wang Zhongliang

机构信息

Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuro-imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, P. R. China.

出版信息

Theranostics. 2025 Jul 25;15(16):8320-8336. doi: 10.7150/thno.112209. eCollection 2025.


DOI:10.7150/thno.112209
PMID:40860132
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12374590/
Abstract

Pyroptosis, a form of programmed cell death mediated by gasdermin proteins, holds significant potential in cancer immunotherapy. However, precise control of pyroptosis in cancer cells is essential to avoid biosafety concerns. This study aimed to develop a tumor-targeted and tunable pyroptosis-inducing strategy to enhance antitumor efficacy while minimizing systemic side effects. An innovative HS-activated nanomodulator equipped with an optical switch was designed for tumor-specific and adjustable pyroptosis induction. The nanomodulator was activated by HS in the tumor microenvironment of colorectal cancer and further regulated by laser irradiation. Gasdermin-E-mediated pyroptosis was triggered through the synergistic effects of photothermal temperature modulation and demethylation. The proportion of cells undergoing pyroptosis was precisely controlled within a tunable range. The nanomodulator successfully induced pyroptosis in microsatellite-stable colorectal cancer cells within a tunable range of 0-31%. This precise regulation significantly enhanced antitumor efficacy while minimizing systemic side effects. The combination of photothermal modulation and demethylation ensured effective and safe pyroptosis induction. This study presents a novel and precise method for controlling pyroptosis using photothermal temperature modulation. The findings provide essential guidance for in vivo applications and offer valuable insights into the development of nanomedicines capable of safely and effectively inducing adjustable proportion of pyroptosis in cancer therapy.

摘要

细胞焦亡是一种由gasdermin蛋白介导的程序性细胞死亡形式,在癌症免疫治疗中具有巨大潜力。然而,精确控制癌细胞中的细胞焦亡对于避免生物安全问题至关重要。本研究旨在开发一种肿瘤靶向且可调节的细胞焦亡诱导策略,以增强抗肿瘤疗效,同时将全身副作用降至最低。设计了一种配备光开关的创新型HS激活纳米调节剂,用于肿瘤特异性和可调节的细胞焦亡诱导。该纳米调节剂在结直肠癌的肿瘤微环境中被HS激活,并通过激光照射进一步调节。通过光热温度调节和去甲基化的协同作用触发Gasdermin-E介导的细胞焦亡。发生细胞焦亡的细胞比例在可调节范围内被精确控制。该纳米调节剂在0-31%的可调节范围内成功诱导微卫星稳定的结直肠癌细胞发生细胞焦亡。这种精确调节显著增强了抗肿瘤疗效,同时将全身副作用降至最低。光热调节和去甲基化的结合确保了有效且安全地诱导细胞焦亡。本研究提出了一种利用光热温度调节控制细胞焦亡的新颖且精确的方法。这些发现为体内应用提供了重要指导,并为开发能够在癌症治疗中安全有效地诱导可调节比例细胞焦亡的纳米药物提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/24f353cfc616/thnov15p8320g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/adb99e33e2bb/thnov15p8320g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/0615514f80ca/thnov15p8320g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/9ba487d3f870/thnov15p8320g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/877a09e34520/thnov15p8320g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/de5c41a56b7f/thnov15p8320g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/33518c102d95/thnov15p8320g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/24f353cfc616/thnov15p8320g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/adb99e33e2bb/thnov15p8320g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/0615514f80ca/thnov15p8320g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/9ba487d3f870/thnov15p8320g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/877a09e34520/thnov15p8320g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/de5c41a56b7f/thnov15p8320g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/33518c102d95/thnov15p8320g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0c1/12374590/24f353cfc616/thnov15p8320g007.jpg

相似文献

[1]
A pyroptosis proportion tunable nano-modulator for cancer immunotherapy.

Theranostics. 2025-7-25

[2]
Mitochondria-targeted photodynamic therapy triggers GSDME-mediated pyroptosis and sensitizes anti-PD-1 therapy in colorectal cancer.

J Immunother Cancer. 2024-3-1

[3]
Biomimetic Delivery of Cisplatin for Efficient Immunotherapy of Gasdermin E-Positive Hepatocellular Carcinoma via a Pt Concentration-Dependent Minimalist Pyroptosis Strategy.

Adv Healthc Mater. 2025-8

[4]
Oncolytic reovirus enhances the effect of CEA immunotherapy when combined with PD1-PDL1 inhibitor in a colorectal cancer model.

Immunotherapy. 2025-4

[5]
Hypoxia-Responsive Nano-Photosensitizer Anchored by PEGylated BODIPY: A Single-Laser-Driven Platform for Photo-Enhanced Synergistic Chemo/Photodynamic/Photothermal Cancer Therapy.

Mol Pharm. 2025-9-1

[6]
Synergistic Provoking of Pyroptosis and STING Pathway by Multifunctional Manganese-Polydopamine Nano-Immunomodulator for Enhanced Renal Cell Carcinoma Immunotherapy.

Adv Healthc Mater. 2025-6

[7]
Phosphorylated IRF3 promotes GSDME-mediated pyroptosis through RIPK1/FADD/caspase-8 complex formation during mitotic arrest in ovarian cancer.

Cell Commun Signal. 2025-7-1

[8]
An Activated Gasdermin Mimicking Polymer for Antitumor Immunity.

ACS Nano. 2025-8-26

[9]
Real-world comparison of chemotherapy plus bevacizumab with or without immunotherapy as first-line therapy in colorectal cancer.

World J Gastroenterol. 2025-6-28

[10]
Engineered Nano-Micro Pyroptosis Generators: A Magnetic-Metallo-Immunotherapeutic Strategy to Reinforce Transarterial Embolization.

J Am Chem Soc. 2025-7-23

本文引用的文献

[1]
High Immunogenic Cuproptosis Evoked by In Situ Sulfidation-Activated Pyroptosis for Tumor-Targeted Immunotherapy of Colorectal Cancer.

Small Sci. 2024-1-17

[2]
Tunable Nanomaterials of Intracellular Crystallization for In Situ Biolabeling and Biomedical Imaging.

Chem Biomed Imaging. 2023-3-30

[3]
A Multiple-Response Cascade Nanoreactor for Starvation and Deep Catalysis Chemodynamic Assisted Near-Infrared-II Mild Photothermal Therapy.

Chem Biomed Imaging. 2023-3-6

[4]
Dual Starvations Induce Pyroptosis for Orthotopic Pancreatic Cancer Therapy through Simultaneous Deprivation of Glucose and Glutamine.

J Am Chem Soc. 2024-7-3

[5]
Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity.

Nat Rev Cancer. 2024-5

[6]
Kirkendall effect induced ultrafine VOOH nanoparticles and their transformation into VO(M) for energy-efficient smart windows.

Mater Horiz. 2024-2-19

[7]
Trans-vaccenic acid reprograms CD8 T cells and anti-tumour immunity.

Nature. 2023-11

[8]
The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases.

Nat Rev Cardiol. 2024-4

[9]
Sialic Acid-Functionalized Pyroptosis Nanotuner for Epigenetic Regulation and Enhanced Cancer Immunotherapy.

Small. 2024-3

[10]
Sonodynamic-immunomodulatory nanostimulators activate pyroptosis and remodel tumor microenvironment for enhanced tumor immunotherapy.

Theranostics. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索