Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.
Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, Minnesota, USA.
mBio. 2018 Feb 20;9(1):e01650-17. doi: 10.1128/mBio.01650-17.
Oat crown rust, caused by the fungus f. sp. , is a devastating disease that impacts worldwide oat production. For much of its life cycle, f. sp. is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous genome assemblies of two f. sp. isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in f. sp. Disease management strategies for oat crown rust are challenged by the rapid evolution of f. sp. , which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding f. sp. , resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of f. sp. as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of f. sp. .
燕麦冠锈病,由真菌 f. sp. 引起,是一种毁灭性的疾病,影响全球燕麦生产。在其生命周期的大部分时间里, f. sp. 是双核的,有两个单独的单倍体核,其毒力基因型可能不同,这突出了理解该物种单倍型多样性的重要性。我们从长读序列中生成了两个 f. sp. 分离株 12SD80 和 12NC29 的高度连续的 基因组组装。总共,我们为 12SD80 组装了 603 个主要的原始连续体,总组装长度为 99.16 Mbp,为 12NC29 组装了 777 个主要的原始连续体,总长度为 105.25 Mbp;每个基因组的大约 52%被组装成交替的单倍型。这揭示了每个分离株中两个单倍型之间的结构变异,相当于基因组大小的 2%以上,12SD80 和 12NC29 中分别有大约 260000 和 380000 个杂合单核苷酸多态性。基于转录的注释分别为分离株 12SD80 和 12NC29 鉴定了 26796 和 28801 个编码序列,包括在单倍型定相区域的大约 7000 个等位基因对。此外,表达谱分析揭示了共表达分泌效应子候选物的聚类,并且分离株之间的大多数同源效应子表现出表达模式的保守性。然而,一小部分同源物的表达存在差异,这可能导致 12SD80 和 12NC29 之间的毒力差异。这项研究提供了第一个双核锈菌真菌的单倍型定相参考基因组,为研究 f. sp. 的致病机制奠定了基础。燕麦冠锈病的疾病管理策略受到 f. sp. 的快速进化的挑战,这使得燕麦品种中的抗性基因无效。尽管了解 f. sp. 的经济重要性,但研究致病性和新毒力特征的分子机制的资源却缺乏。这种局限性部分归因于 f. sp. 的专性生物营养生活方式以及基因组的双核性质,这些特征也与其他重要的锈病病原体共享。这项研究报告了第一个双核真菌物种的单倍型定相基因组组装的首次发布,并证明了利用新兴技术研究 f. sp. 群体遗传多样性的可行性。