Suppr超能文献

机器学习在微生物病原体挥发性特征元分析中的应用。

Machine learning for the meta-analyses of microbial pathogens' volatile signatures.

机构信息

UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.

LIBPhys-UNL, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.

出版信息

Sci Rep. 2018 Feb 20;8(1):3360. doi: 10.1038/s41598-018-21544-1.

Abstract

Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.

摘要

基于挥发物组学的无创、快速诊断工具在传染病控制方面具有巨大的应用前景。然而,用于识别区分人类病原体的微生物挥发性有机化合物(VOC)的工具仍然缺失。人工智能正逐渐被视为健康科学领域的重要工具。在这里,我们应用基于支持向量机和特征选择工具的机器学习算法来寻找具有病原体区分能力的微生物 VOC 组合。使用了 1977 年至 2016 年期间发表的关于人类微生物病原体排放 VOC 的研究作为源数据。仅需 18 种 VOC 就足以高精度(77%)和高精准度(62-100%)地预测 11 种微生物病原体的身份。有一组 VOC 与 11 种病原体中的每一种都相关,可以高精度和高精准度(86-90%)预测样本中该病原体的存在。所实施的病原体分类方法支持未来数据库更新,以纳入新的病原体-VOC 数据,从而丰富分类器。所识别的 VOC 组合可以提高使用人工嗅觉设备进行非侵入性感染诊断的选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2648/5820279/bf3378560555/41598_2018_21544_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验