Suppr超能文献

呼出挥发性有机化合物作为慢性阻塞性肺疾病、哮喘和呼吸机相关性肺炎早期检测的新型生物标志物:一项横断面研究

Exhaled volatile organic compounds as novel biomarkers for early detection of COPD, asthma, and PRISm: a cross-sectional study.

作者信息

Tian Jiaxin, Zhang Qiurui, Peng Minhua, Guo Leixin, Zhao Qianqian, Lin Wei, Chen Sitong, Liu Xuefei, Xie Simin, Wu Wenxin, Li Yijie, Wang Junqi, Cao Jin, Wang Ping, Zhou Min

机构信息

Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Rd., Shanghai, 200025, China.

Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, 200025, China.

出版信息

Respir Res. 2025 May 5;26(1):173. doi: 10.1186/s12931-025-03242-5.

Abstract

BACKGROUND

Globally, chronic respiratory diseases have become the third leading cause of death, including chronic obstructive pulmonary disease (COPD) and asthma, and have been threatening human life for a long time. To alleviate the disease burden, it is crucial to develop rapid and convenient screening methods for COPD, preserved ratio impaired spirometry (PRISm), and asthma. Volatile organic compounds (VOCs) in breath can reflect the pathophysiological processes of disease, thereby having the potential to serve as a promising approach for diagnosing respiratory diseases. Can we identify VOC markers in breath with the potential to serve as classification indicators, and further establish learning models for the early detection of COPD, asthma, or PRISm patients?

METHODS

This is a cross-sectional study in which exhaled breath samples were collected from 184 patients with COPD, 66 patients with asthma, 72 PRISm individuals, and 45 healthy individuals. From August 2023 to June 2024, the breath samples were analyzed using portable micro gas chromatography (CXBA-Alpha, ChromX Health Co., Ltd.). Potential VOC markers for classification were identified by univariate and multivariate analyses. Subsequently, classification models were established by machine learning algorithms, based on these VOC markers along with baseline characteristics. The sensitivity, specificity, and accuracy of these models were calculated to assess their overall discriminatory performance.

RESULTS

A total of 367 patients were enrolled in our study. We identified nine VOCs distinguishing COPD patients from healthy controls, nine VOCs differentiating the PRISm population from healthy controls, five VOCs separating asthma patients from healthy controls, five VOCs distinguishing COPD patients from asthma patients, and seven VOCs differentiating the PRISm population from asthma patients based on breathomics feature selection. We utilized five algorithms to establish diagnostic models and selected the optimal one among them. The random forest model best distinguished COPD from healthy controls with an area under the receiver operating characteristic curve (AUC) of 0.92 ± 0.01. The support vector classifier (SVC) model was most effective in separating PRISm from healthy controls, achieving an AUC of 0.78 ± 0.01. Logistic regression performed well in discriminating asthma from PRISm (AUC, 0.74 ± 0.02) and COPD (AUC, 0.92 ± 0.01), in contrast, the random forest model differentiated asthma from healthy controls with an AUC of 0.81 ± 0.02.

CONCLUSION

VOC panel-based classification models have the potential to be a novel strategy for the discrimination of chronic respiratory diseases. Using the portal micro gas chromatography enables swift detection of chronic respiratory disease and, most importantly, facilitates the rapid identification of PRISm individuals within the population.

摘要

背景

在全球范围内,慢性呼吸道疾病已成为第三大死因,包括慢性阻塞性肺疾病(COPD)和哮喘,长期以来一直威胁着人类生命。为减轻疾病负担,开发针对COPD、肺功能保留比例受损的肺量测定法(PRISm)和哮喘的快速便捷筛查方法至关重要。呼出气体中的挥发性有机化合物(VOCs)能够反映疾病的病理生理过程,因此有潜力成为诊断呼吸道疾病的一种有前景的方法。我们能否识别呼出气体中具有作为分类指标潜力的VOC标记物,并进一步建立用于早期检测COPD、哮喘或PRISm患者的学习模型?

方法

这是一项横断面研究,收集了184例COPD患者、66例哮喘患者、72例PRISm个体和45例健康个体的呼出气体样本。2023年8月至2024年6月,使用便携式微型气相色谱仪(CXBA - Alpha,ChromX Health Co., Ltd.)对呼出气体样本进行分析。通过单变量和多变量分析确定潜在的分类VOC标记物。随后,基于这些VOC标记物以及基线特征,通过机器学习算法建立分类模型。计算这些模型的敏感性、特异性和准确性,以评估其整体判别性能。

结果

我们的研究共纳入367例患者。基于呼吸组学特征选择,我们识别出9种区分COPD患者与健康对照的VOCs、9种区分PRISm人群与健康对照的VOCs、5种区分哮喘患者与健康对照的VOCs、5种区分COPD患者与哮喘患者的VOCs以及7种区分PRISm人群与哮喘患者的VOCs。我们使用五种算法建立诊断模型,并从中选择最优模型。随机森林模型在区分COPD与健康对照方面表现最佳,受试者工作特征曲线下面积(AUC)为0.92±0.01。支持向量分类器(SVC)模型在区分PRISm与健康对照方面最有效,AUC为0.78±0.01。逻辑回归在区分哮喘与PRISm(AUC,0.74±0.02)和COPD(AUC, 0.92±0.01)方面表现良好,相比之下,随机森林模型区分哮喘与健康对照的AUC为0.81±0.02。

结论

基于VOC面板的分类模型有潜力成为一种区分慢性呼吸道疾病的新策略。使用便携式微型气相色谱仪能够快速检测慢性呼吸道疾病,最重要的是,有助于在人群中快速识别PRISm个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c367/12051326/0aa1a6cb68b9/12931_2025_3242_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验