Suppr超能文献

嗜热栖热菌转运ATP酶PilF的三个N端一般分泌途径结构域和沃克模体的功能剖析

Functional dissection of the three N-terminal general secretory pathway domains and the Walker motifs of the traffic ATPase PilF from Thermus thermophilus.

作者信息

Kruse Kerstin, Salzer Ralf, Joos Friederike, Averhoff Beate

机构信息

Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.

Department of Structural Biology, Max-Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany.

出版信息

Extremophiles. 2018 May;22(3):461-471. doi: 10.1007/s00792-018-1008-9. Epub 2018 Feb 20.

Abstract

The traffic ATPase PilF of Thermus thermophilus powers pilus assembly as well as uptake of DNA. PilF differs from other traffic ATPases by a triplicated general secretory pathway II, protein E, N-terminal domain (GSPIIABC). We investigated the in vivo and in vitro roles of the GSPII domains, the Walker A motif and a catalytic glutamate by analyzing a set of PilF deletion derivatives and pilF mutants. Here, we report that PilF variants devoid of the first two or all three GSPII domains do not form stable hexamers indicating a role of the triplicated GSPII domain in complex formation and/or stability. A pilFΔGSPIIC mutant was significantly impaired in piliation which leads to the conclusion that the GSPIIC domain plays a vital role in pilus assembly. Interestingly, the pilFΔGSPIIC mutant was hypertransformable. This suggests that GSPIIC strongly affects transformation efficiency. A pilF∆GSPIIA mutant exhibited wild-type piliation but reduced pilus-mediated twitching motility, suggesting that GSPIIA plays a role in pilus dynamics. Furthermore, we report that pilF mutants with a defect in the ATP binding Walker A motif or in the catalytic glutamate residue are defective in piliation and natural transformation. These findings show that both, ATP binding and hydrolysis, are essential for the dual function of PilF in natural transformation and pilus assembly.

摘要

嗜热栖热菌的转运ATP酶PilF为菌毛组装以及DNA摄取提供动力。PilF与其他转运ATP酶的不同之处在于其具有三重重复的一般分泌途径II、蛋白质E的N端结构域(GSPIIABC)。我们通过分析一组PilF缺失衍生物和pilF突变体,研究了GSPII结构域、沃克A基序和催化性谷氨酸在体内和体外的作用。在此,我们报告,缺失前两个或所有三个GSPII结构域的PilF变体不能形成稳定的六聚体,这表明三重重复的GSPII结构域在复合物形成和/或稳定性中发挥作用。一个pilFΔGSPIIC突变体在菌毛形成方面严重受损,由此得出结论,GSPIIC结构域在菌毛组装中起至关重要的作用。有趣的是,pilFΔGSPIIC突变体具有高度可转化性。这表明GSPIIC强烈影响转化效率。一个pilF∆GSPIIA突变体表现出野生型菌毛形成,但菌毛介导的颤动运动减少,这表明GSPIIA在菌毛动态变化中起作用。此外,我们报告,在ATP结合沃克A基序或催化性谷氨酸残基上有缺陷的pilF突变体在菌毛形成和自然转化方面存在缺陷。这些发现表明,ATP结合和水解对于PilF在自然转化和菌毛组装中的双重功能都是必不可少的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验