Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
CNS Neurosci Ther. 2018 Apr;24(4):281-291. doi: 10.1111/cns.12828. Epub 2018 Feb 21.
This review summarizes evidence for dysfunctional connectivity between cortical and striatal neurons in Huntington's disease (HD), a fatal neurodegenerative condition caused by a single gene mutation. The focus is on data derived from recording of electrophysiological signals in behaving transgenic mouse models.
Firing patterns of individual neurons and the frequency oscillations of local field potentials indicate a disruption in corticostriatal processing driven, in large part, by interactions between cells that contain the mutant gene rather than the mutant gene alone. Dysregulation of glutamate, an excitatory amino acid released by cortical afferents, plays a key role in the breakdown of corticostriatal communication, a process modulated by ascorbate, an antioxidant vitamin found in high concentration in striatum. Up-regulation of glutamate transport by drug administration or viral-vector delivery improves ascorbate homeostasis and neurobehavioral processing in HD mice. Further analysis of electrophysiological data, including the use of sophisticated computational strategies, is required to discern how behavioral demands modulate the flow of corticostriatal information and its disruption by HD.
Long before massive cell loss occurs, HD impairs the mechanisms by which cortical and striatal neurons communicate. A key problem identified in transgenic animal models is dysregulation of the dynamic changes in extracellular glutamate and ascorbate. Improved understanding of how these neurochemical systems impact corticostriatal communication is necessary before an effective therapeutic strategy can emerge.
本综述总结了亨廷顿病(HD)中皮质和纹状体神经元之间功能连接障碍的证据,HD 是一种由单一基因突变引起的致命神经退行性疾病。重点是来自行为转基因小鼠模型中记录的电生理信号的数据。
单个神经元的发射模式和局部场电势的频率振荡表明,皮质纹状体处理的中断主要是由包含突变基因的细胞之间的相互作用驱动的,而不仅仅是突变基因。兴奋性氨基酸谷氨酸的释放,由皮质传入纤维释放,在外周谷氨酸能传递的破坏中起着关键作用,这一过程由抗坏血酸(一种在纹状体中高浓度存在的抗氧化维生素)调节。通过药物治疗或病毒载体传递来增加谷氨酸转运蛋白的水平,可以改善 HD 小鼠中的抗坏血酸稳态和神经行为处理。需要进一步分析电生理数据,包括使用复杂的计算策略,以辨别行为需求如何调节皮质纹状体信息的流动及其在 HD 中的中断。
早在大量细胞丢失之前,HD 就损害了皮质和纹状体神经元之间通讯的机制。在转基因动物模型中发现的一个关键问题是细胞外谷氨酸和抗坏血酸的动态变化失调。在出现有效的治疗策略之前,有必要更好地了解这些神经化学系统如何影响皮质纹状体的通讯。