Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.
Nature. 2018 Mar 1;555(7694):54-60. doi: 10.1038/nature25741. Epub 2018 Feb 21.
The formation of red blood cells begins with the differentiation of multipotent haematopoietic progenitors. Reconstructing the steps of this differentiation represents a general challenge in stem-cell biology. Here we used single-cell transcriptomics, fate assays and a theory that allows the prediction of cell fates from population snapshots to demonstrate that mouse haematopoietic progenitors differentiate through a continuous, hierarchical structure into seven blood lineages. We uncovered coupling between the erythroid and the basophil or mast cell fates, a global haematopoietic response to erythroid stress and novel growth factor receptors that regulate erythropoiesis. We defined a flow cytometry sorting strategy to purify early stages of erythroid differentiation, completely isolating classically defined burst-forming and colony-forming progenitors. We also found that the cell cycle is progressively remodelled during erythroid development and during a sharp transcriptional switch that ends the colony-forming progenitor stage and activates terminal differentiation. Our work showcases the utility of linking transcriptomic data to predictive fate models, and provides insights into lineage development in vivo.
红细胞的形成始于多能造血祖细胞的分化。重建这种分化的步骤代表了干细胞生物学中的一个普遍挑战。在这里,我们使用单细胞转录组学、命运测定和一种可以从群体快照预测细胞命运的理论,证明了小鼠造血祖细胞通过一个连续的、层次化的结构分化为七个血液谱系。我们揭示了红系细胞与嗜碱性粒细胞或肥大细胞命运之间的耦合,这是对红系应激的全球造血反应,以及调节红细胞生成的新型生长因子受体。我们定义了一种流式细胞术分选策略,以纯化红细胞分化的早期阶段,完全分离经典定义的爆式形成和集落形成祖细胞。我们还发现,细胞周期在红细胞发育过程中以及在结束集落形成祖细胞阶段并激活终末分化的急剧转录开关过程中逐渐重塑。我们的工作展示了将转录组数据与预测命运模型联系起来的实用性,并提供了对体内谱系发育的深入了解。