Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
Molecular Neurogenetics Unit, IRCCS Foundation C. Besta Neurological Institute, 20126 Milan, Italy.
Cell Rep. 2018 Feb 20;22(8):2066-2079. doi: 10.1016/j.celrep.2018.01.089.
Dysfunctions in mitochondrial dynamics and metabolism are common pathological processes associated with Parkinson's disease (PD). It was recently shown that an inherited form of PD and dementia is caused by mutations in the OPA1 gene, which encodes for a key player in mitochondrial fusion and structure. iPSC-derived neural cells from these patients exhibited severe mitochondrial fragmentation, respiration impairment, ATP deficits, and heightened oxidative stress. Reconstitution of normal levels of OPA1 in PD-derived neural cells normalized mitochondria morphology and function. OPA1-mutated neuronal cultures showed reduced survival in vitro. Intriguingly, selective inhibition of necroptosis effectively rescued this survival deficit. Additionally, dampening necroptosis in MPTP-treated mice protected from DA neuronal cell loss. This human iPSC-based model captures both early pathological events in OPA1 mutant neural cells and the beneficial effects of blocking necroptosis, highlighting this cell death process as a potential therapeutic target for PD.
线粒体动力学和代谢功能障碍是与帕金森病(PD)相关的常见病理过程。最近的研究表明,一种遗传性 PD 和痴呆是由 OPA1 基因突变引起的,该基因编码线粒体融合和结构的关键因子。来自这些患者的 iPSC 衍生神经细胞表现出严重的线粒体碎片化、呼吸功能障碍、ATP 不足和氧化应激增加。在 PD 衍生的神经细胞中重建正常水平的 OPA1 可使线粒体形态和功能正常化。OPA1 突变神经元培养物在体外的存活率降低。有趣的是,选择性抑制坏死性凋亡可有效挽救这种存活率降低的情况。此外,在 MPTP 处理的小鼠中抑制坏死性凋亡可防止 DA 神经元细胞丢失。这种基于人 iPSC 的模型捕捉到了 OPA1 突变神经细胞中早期的病理事件以及阻断坏死性凋亡的有益效果,突出了这种细胞死亡过程作为 PD 的潜在治疗靶点。