Perales-Clemente Ester, Cook Alexandra N, Evans Jared M, Roellinger Samantha, Secreto Frank, Emmanuele Valentina, Oglesbee Devin, Mootha Vamsi K, Hirano Michio, Schon Eric A, Terzic Andre, Nelson Timothy J
Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Division of Cardiovascular Diseases, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, USA.
Departments of Cardiovascular Diseases, Molecular Pharmacology and Experimental Therapeutics, Division of General Internal Medicine, Division of Pediatric Cardiology, and Transplant Center, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, USA.
EMBO J. 2016 Sep 15;35(18):1979-90. doi: 10.15252/embj.201694892. Epub 2016 Jul 19.
Functional variability among human clones of induced pluripotent stem cells (hiPSCs) remains a limitation in assembling high-quality biorepositories. Beyond inter-person variability, the root cause of intra-person variability remains unknown. Mitochondria guide the required transition from oxidative to glycolytic metabolism in nuclear reprogramming. Moreover, mitochondria have their own genome (mitochondrial DNA [mtDNA]). Herein, we performed mtDNA next-generation sequencing (NGS) on 84 hiPSC clones derived from a cohort of 19 individuals, including mitochondrial and non-mitochondrial patients. The analysis of mtDNA variants showed that low levels of potentially pathogenic mutations in the original fibroblasts are revealed through nuclear reprogramming, generating mutant hiPSCs with a detrimental effect in their differentiated progeny. Specifically, hiPSC-derived cardiomyocytes with expanded mtDNA mutations non-related with any described human disease, showed impaired mitochondrial respiration, being a potential cause of intra-person hiPSC variability. We propose mtDNA NGS as a new selection criterion to ensure hiPSC quality for drug discovery and regenerative medicine.
诱导多能干细胞(hiPSC)的人类克隆之间的功能变异性仍然是构建高质量生物样本库的一个限制因素。除了个体间的变异性外,个体内变异性的根本原因仍然未知。线粒体在核重编程过程中引导着从氧化代谢到糖酵解代谢的必要转变。此外,线粒体有自己的基因组(线粒体DNA [mtDNA])。在此,我们对来自19名个体(包括线粒体和非线粒体疾病患者)群体的84个hiPSC克隆进行了mtDNA下一代测序(NGS)。mtDNA变异分析表明,通过核重编程可揭示原始成纤维细胞中低水平的潜在致病突变,从而产生对其分化后代有有害影响的突变hiPSC。具体而言,具有与任何已描述人类疾病无关的mtDNA突变扩展的hiPSC来源的心肌细胞,显示出线粒体呼吸受损,这是个体内hiPSC变异性的一个潜在原因。我们建议将mtDNA NGS作为一种新的选择标准,以确保用于药物发现和再生医学的hiPSC质量。