Everington Ethan A, Gibbard Adina G, Swinny Jerome D, Seifi Mohsen
Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom.
Front Mol Neurosci. 2018 Feb 6;11:18. doi: 10.3389/fnmol.2018.00018. eCollection 2018.
Gamma aminobutyric acid (GABA) subtype A receptors (GABARs) are integral membrane ion channels composed of five individual proteins or subunits. Up to 19 different GABAR subunits (α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3) have been identified, resulting in anatomically, physiologically, and pharmacologically distinct multiple receptor subtypes, and therefore GABA-mediated inhibition, across the central nervous system (CNS). Additionally, GABAR-modulating drugs are important tools in clinical medicine, although their use is limited by adverse effects. While significant advances have been made in terms of characterizing the GABAR system within the brain, relatively less is known about the molecular phenotypes within the peripheral nervous system of major organ systems. This represents a potentially missed therapeutic opportunity in terms of utilizing or repurposing clinically available GABAR drugs, as well as promising research compounds discarded due to their poor CNS penetrance, for the treatment of peripheral disorders. In addition, a broader understanding of the peripheral GABAR subtype repertoires will contribute to the design of therapies which minimize peripheral side-effects when treating CNS disorders. We have recently provided a high resolution molecular and function characterization of the GABARs within the enteric nervous system of the mouse colon. In this study, the aim was to determine the constituent GABAR subunit expression profiles of the mouse bladder, heart, liver, kidney, lung, and stomach, using reverse transcription polymerase chain reaction and western blotting with brain as control. The data indicate that while some subunits are expressed widely across various organs (α3-5), others are restricted to individual organs (γ2, only stomach). Furthermore, we demonstrate complex organ-specific developmental expression plasticity of the transporters which determine the chloride gradient within cells, and therefore whether GABAR activation has a depolarizing or hyperpolarizing effect. Finally, we demonstrate that prior exposure to early life psychosocial stress induces significant changes in peripheral GABAR subunit expression and chloride transporters, in an organ- and subunit-specific manner. Collectively, the data demonstrate the molecular diversity of the peripheral GABAR system and how this changes dynamically in response to life experience. This provides a molecular platform for functional analyses of the GABA-GABAR system in health, and in diseases affecting various peripheral organs.
γ-氨基丁酸(GABA)A 型受体(GABARs)是由五个独立蛋白质或亚基组成的整合膜离子通道。现已鉴定出多达 19 种不同的 GABAR 亚基(α1-6、β1-3、γ1-3、δ、ε、θ、π 和 ρ1-3),这导致在中枢神经系统(CNS)中存在解剖学、生理学和药理学上不同的多种受体亚型,进而产生 GABA 介导的抑制作用。此外,GABAR 调节药物是临床医学中的重要工具,尽管其使用受到不良反应的限制。虽然在表征脑内 GABAR 系统方面已取得重大进展,但对于主要器官系统外周神经系统内的分子表型了解相对较少。就利用或重新利用临床可用的 GABAR 药物以及因中枢神经系统渗透性差而被丢弃的有前景的研究化合物来治疗外周疾病而言,这可能是一个错失的治疗机会。此外,对外周 GABAR 亚型库的更广泛了解将有助于设计在治疗中枢神经系统疾病时将外周副作用降至最低的疗法。我们最近提供了小鼠结肠肠神经系统内 GABARs 的高分辨率分子和功能表征。在本研究中,目的是使用逆转录聚合酶链反应和以脑为对照的蛋白质印迹法,确定小鼠膀胱、心脏、肝脏、肾脏、肺和胃中组成性 GABAR 亚基的表达谱。数据表明,虽然一些亚基在各种器官中广泛表达(α3-5),但其他亚基则局限于个别器官(γ2,仅在胃中)。此外,我们证明了决定细胞内氯离子梯度的转运体具有复杂的器官特异性发育表达可塑性,因此也决定了 GABAR 激活具有去极化还是超极化作用。最后,我们证明早年暴露于心理社会应激会以器官和亚基特异性方式诱导外周 GABAR 亚基表达和氯离子转运体发生显著变化。总体而言,这些数据证明了外周 GABAR 系统的分子多样性以及它如何响应生活经历而动态变化。这为健康状态下以及影响各种外周器官的疾病中 GABA-GABAR 系统的功能分析提供了一个分子平台。