Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso, Chile.
Núcleo de Biotecnología de Curauma, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2950, Valparaíso, Chile.
Amino Acids. 2018 May;50(5):557-568. doi: 10.1007/s00726-018-2542-6. Epub 2018 Feb 21.
Previous work demonstrated that lysine homopeptides adopt a polyproline II (PPII) structure. Lysine homopeptides with odd number of residues, especially with 11 residues (K11), were capable of inhibiting the growth of a broader spectrum of bacteria than those with an even number. Confocal studies also determined that K11 was able to localize exclusively in the bacterial membrane, leading to cell death. In this work, the mechanism of action of this peptide was further analyzed focused on examining the structural changes in bacterial membrane induced by K11, and in K11 itself when interacting with bacterial membrane lipids. Moreover, alanine and proline scans were performed for K11 to identify relevant positions in structure conformation and antibacterial activity. To do so, circular dichroism spectroscopy (CD) was conducted in saline phosphate buffer (PBS) and in lipidic vesicles, using large unilamellar vesicles (LUV), composed of 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) or bacterial membrane lipid. Antimicrobial activity of K11 and their analogs was evaluated in Gram-positive and Gram-negative bacterial strains. The scanning electron microscopy (SEM) micrographs of Staphylococcus aureus ATCC 25923 exposed to the Lys homopeptide at MIC concentration showed blisters and bubbles formed on the bacterial surface, suggesting that K11 exerts its action by destabilizing the bacterial membrane. CD analysis revealed a remarkably enhanced PPII structure of K11 when replacing some of its central residues by proline in PBS. However, when such peptide analogs were confronted with either DMPG-LUV or membrane lipid extract-LUV, the tendency to form PPII structure was severely weakened. On the contrary, K11 peptide showed a remarkably enhanced PPII structure in the presence of DMPG-LUV. Antibacterial tests revealed that K11 was able to inhibit all tested bacteria with an MIC value of 5 µM, while proline and alanine analogs have a reduced activity on Listeria monocytogenes. Besides, the activity against Vibrio parahaemolyticus was affected in most of the alanine-substituted analogs. However, lysine substitutions by alanine or proline at position 7 did not alter the activity against all tested bacterial strains, suggesting that this position can be screened to find a substitute amino acid yielding a peptide with increased antibacterial activity. These results also indicate that the PPII secondary structure of K11 is stabilized by the interaction of the peptide with negatively charged phospholipids in the bacterial membrane, though not being the sole determinant for its antimicrobial activity.
先前的工作表明,赖氨酸同肽采取多聚脯氨酸 II(PPII)结构。具有奇数个残基的赖氨酸同肽,特别是具有 11 个残基(K11),比具有偶数个残基的同肽更能抑制更广泛范围的细菌生长。共焦研究还确定 K11 能够专门定位于细菌膜中,导致细胞死亡。在这项工作中,进一步分析了这种肽的作用机制,重点研究了 K11 诱导的细菌膜结构变化,以及 K11 与细菌膜脂质相互作用时自身的结构变化。此外,还对 K11 进行了丙氨酸和脯氨酸扫描,以确定结构构象和抗菌活性的相关位置。为此,在生理盐水磷酸盐缓冲液(PBS)和脂质体中,使用由二肉豆蔻酰-sn-甘油-3-磷酸甘油(DMPG)或细菌膜脂质组成的大单室囊泡(LUV),进行了圆二色性光谱(CD)分析。K11 及其类似物的抗菌活性在革兰氏阳性和革兰氏阴性细菌菌株中进行了评估。在 MIC 浓度下暴露于 Lys 同肽的金黄色葡萄球菌 ATCC 25923 的扫描电子显微镜(SEM)照片显示,细菌表面形成了水疱和气泡,表明 K11 通过破坏细菌膜发挥作用。CD 分析显示,当用脯氨酸取代 K11 的一些中心残基时,K11 的 PPII 结构明显增强。然而,当这些肽类似物与 DMPG-LUV 或膜脂质提取物-LUV 接触时,形成 PPII 结构的趋势大大减弱。相反,在 DMPG-LUV 存在下,K11 肽表现出明显增强的 PPII 结构。抗菌试验表明,K11 能够以 5 μM 的 MIC 值抑制所有测试的细菌,而脯氨酸和丙氨酸类似物对单核细胞增生李斯特菌的活性降低。此外,大多数丙氨酸取代类似物对副溶血弧菌的活性受到影响。然而,赖氨酸被丙氨酸或脯氨酸取代第 7 位不会改变对所有测试的细菌菌株的活性,这表明可以筛选该位置以找到具有增加的抗菌活性的替代氨基酸的肽。这些结果还表明,K11 的 PPII 二级结构通过肽与细菌膜中带负电荷的磷脂的相互作用得到稳定,尽管不是其抗菌活性的唯一决定因素。