Zhan Alan, Fryett Taylor K, Colburn Shane, Majumdar Arka
Appl Opt. 2018 Feb 20;57(6):1437-1446. doi: 10.1364/AO.57.001437.
Arrays of wavelength scale scatterers are a promising platform for designing optical elements with a compact footprint. The large number of degrees of freedom in this system allows for unique and plentiful functionalities. However, the many variables also create a complex design problem. While intuitive forward design methods work for simple optical elements, they often fail to produce complicated elements, especially those involving multiple elements. We present an inverse design methodology for large arrays of wavelength scale spheres based on both adjoint optimization or sensitivity analysis and generalized multi-sphere Mie theory as a solution to the design problem. We validate our methodology by designing two sets of optical elements with scatterers on sub-wavelength and super-wavelength periodic grids. Both sets consist of a singlet and a doublet lens with one and two layers of spheres respectively designed for 1550 nm. The designed NA is ∼0.33 (∼0.5) for the sub-wavelength (super-wavelength) periodic structure. We find that with the sub-wavelength periodicity, the full width at half-maximum of the focal spot produced by the singlet and doublet is smaller than that produced by an ideal lens with the same geometric parameters. Finally, we simulate a realistic experimental scenario for the doublet, where the spheres are placed on a substrate with the same refractive index. We find the performance is similar, but with lower intensity at the focal spot and larger spot size. The method described here will simplify the design procedure for complicated multi-functional optical elements and or scatterer array-based volume optics based on a specified figure of merit.
波长尺度散射体阵列是设计占地面积紧凑的光学元件的一个很有前景的平台。该系统中大量的自由度允许实现独特且丰富的功能。然而,众多变量也带来了一个复杂的设计问题。虽然直观的正向设计方法适用于简单的光学元件,但它们往往无法制造出复杂的元件,尤其是那些涉及多个元件的元件。我们提出了一种基于伴随优化或灵敏度分析以及广义多球体米氏理论的针对大阵列波长尺度球体的逆向设计方法,作为解决该设计问题的方案。我们通过设计两组光学元件来验证我们的方法,这两组元件分别在亚波长和超波长周期网格上带有散射体。两组元件均包括一个单透镜和一个双透镜,单透镜和双透镜分别有一层和两层球体,均针对1550纳米进行设计。对于亚波长(超波长)周期结构,设计的数值孔径约为0.33(约为0.5)。我们发现,对于亚波长周期性,单透镜和双透镜产生的焦斑半高宽小于具有相同几何参数的理想透镜产生的焦斑半高宽。最后,我们模拟了双透镜的一个实际实验场景,其中球体放置在具有相同折射率的衬底上。我们发现性能相似,但焦斑处强度较低且光斑尺寸较大。这里描述的方法将基于指定的品质因数简化复杂多功能光学元件或基于散射体阵列的体光学的设计过程。