Suppr超能文献

用于疾病诊断的脑连接网络相似性度量的子网核。

Sub-Network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease Diagnosis.

出版信息

IEEE Trans Image Process. 2018 May;27(5):2340-2353. doi: 10.1109/TIP.2018.2799706.

Abstract

As a simple representation of interactions among distributed brain regions, brain networks have been widely applied to automated diagnosis of brain diseases, such as Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment (MCI). In brain network analysis, a challenging task is how to measure the similarity between a pair of networks. Although many graph kernels (i.e., kernels defined on graphs) have been proposed for measuring the topological similarity of a pair of brain networks, most of them are defined using general graphs, thus ignoring the uniqueness of each node in brain networks. That is, each node in a brain network denotes a particular brain region, which is a specific characteristics of brain networks. Accordingly, in this paper, we construct a novel sub-network kernel for measuring the similarity between a pair of brain networks and then apply it to brain disease classification. Different from current graph kernels, our proposed sub-network kernel not only takes into account the inherent characteristic of brain networks, but also captures multi-level (from local to global) topological properties of nodes in brain networks, which are essential for defining the similarity measure of brain networks. To validate the efficacy of our method, we perform extensive experiments on subjects with baseline functional magnetic resonance imaging data obtained from the Alzheimer's disease neuroimaging initiative database. Experimental results demonstrate that the proposed method outperforms several state-of-the-art graph-based methods in MCI classification.

摘要

作为分布式脑区之间相互作用的一种简单表示,脑网络已被广泛应用于脑疾病的自动诊断,如阿尔茨海默病(AD)及其早期阶段,即轻度认知障碍(MCI)。在脑网络分析中,一个具有挑战性的任务是如何衡量一对网络之间的相似性。尽管已经提出了许多用于测量一对脑网络拓扑相似性的图核(即在图上定义的核),但它们中的大多数都是使用一般图定义的,从而忽略了脑网络中每个节点的独特性。也就是说,脑网络中的每个节点表示一个特定的脑区,这是脑网络的一个特定特征。因此,在本文中,我们构建了一种新的子网核来测量一对脑网络之间的相似性,并将其应用于脑疾病分类。与当前的图核不同,我们提出的子网核不仅考虑了脑网络的固有特性,还捕获了脑网络中节点的多层次(从局部到全局)拓扑性质,这对于定义脑网络的相似性度量至关重要。为了验证我们方法的有效性,我们在来自阿尔茨海默病神经影像学倡议数据库的基线功能磁共振成像数据的受试者上进行了广泛的实验。实验结果表明,该方法在 MCI 分类中优于几种基于图的先进方法。

相似文献

2
Diagnosis of Mild Cognitive Impairment With Ordinal Pattern Kernel.基于有序模式核的轻度认知障碍诊断
IEEE Trans Neural Syst Rehabil Eng. 2022;30:1030-1040. doi: 10.1109/TNSRE.2022.3166560. Epub 2022 Apr 22.
3
Hyper-connectivity of functional networks for brain disease diagnosis.功能网络的超连接用于脑疾病诊断。
Med Image Anal. 2016 Aug;32:84-100. doi: 10.1016/j.media.2016.03.003. Epub 2016 Mar 24.
5
Improving Alzheimer's Disease Classification by Combining Multiple Measures.通过结合多种指标提高阿尔茨海默病分类。
IEEE/ACM Trans Comput Biol Bioinform. 2018 Sep-Oct;15(5):1649-1659. doi: 10.1109/TCBB.2017.2731849. Epub 2017 Jul 25.
6
Classification of Alzheimer's Disease Using Whole Brain Hierarchical Network.基于全脑层次网络的阿尔茨海默病分类。
IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar-Apr;15(2):624-632. doi: 10.1109/TCBB.2016.2635144. Epub 2016 Dec 2.
7
Brain connectivity hyper-network for MCI classification.用于轻度认知障碍分类的脑连接超网络
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):724-32. doi: 10.1007/978-3-319-10470-6_90.
9
Ordinal Pattern: A New Descriptor for Brain Connectivity Networks.序贯模式:脑连接网络的新描述符。
IEEE Trans Med Imaging. 2018 Jul;37(7):1711-1722. doi: 10.1109/TMI.2018.2798500.

引用本文的文献

本文引用的文献

2
Hyper-connectivity of functional networks for brain disease diagnosis.功能网络的超连接用于脑疾病诊断。
Med Image Anal. 2016 Aug;32:84-100. doi: 10.1016/j.media.2016.03.003. Epub 2016 Mar 24.
9
Functional connectivity and graph theory in preclinical Alzheimer's disease.临床前阿尔茨海默病中的功能连接性与图论
Neurobiol Aging. 2014 Apr;35(4):757-68. doi: 10.1016/j.neurobiolaging.2013.10.081. Epub 2013 Oct 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验