文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于地标物的深度多实例学习在脑疾病诊断中的应用。

Landmark-based deep multi-instance learning for brain disease diagnosis.

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599, USA; Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea.

出版信息

Med Image Anal. 2018 Jan;43:157-168. doi: 10.1016/j.media.2017.10.005. Epub 2017 Oct 27.


DOI:10.1016/j.media.2017.10.005
PMID:29107865
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6203325/
Abstract

In conventional Magnetic Resonance (MR) image based methods, two stages are often involved to capture brain structural information for disease diagnosis, i.e., 1) manually partitioning each MR image into a number of regions-of-interest (ROIs), and 2) extracting pre-defined features from each ROI for diagnosis with a certain classifier. However, these pre-defined features often limit the performance of the diagnosis, due to challenges in 1) defining the ROIs and 2) extracting effective disease-related features. In this paper, we propose a landmark-based deep multi-instance learning (LDMIL) framework for brain disease diagnosis. Specifically, we first adopt a data-driven learning approach to discover disease-related anatomical landmarks in the brain MR images, along with their nearby image patches. Then, our LDMIL framework learns an end-to-end MR image classifier for capturing both the local structural information conveyed by image patches located by landmarks and the global structural information derived from all detected landmarks. We have evaluated our proposed framework on 1526 subjects from three public datasets (i.e., ADNI-1, ADNI-2, and MIRIAD), and the experimental results show that our framework can achieve superior performance over state-of-the-art approaches.

摘要

在传统的基于磁共振(MR)图像的方法中,通常涉及两个阶段来获取用于疾病诊断的脑结构信息,即 1)手动将每个 MR 图像分割成多个感兴趣区域(ROI),以及 2)使用特定的分类器从每个 ROI 中提取预定义的特征进行诊断。然而,这些预定义的特征通常会限制诊断的性能,因为在 1)定义 ROI 和 2)提取有效的疾病相关特征方面存在挑战。在本文中,我们提出了一种基于地标(landmark)的深度多实例学习(LDMIL)框架,用于脑疾病诊断。具体来说,我们首先采用数据驱动的学习方法来发现脑 MR 图像中的与疾病相关的解剖地标及其附近的图像补丁。然后,我们的 LDMIL 框架学习一个端到端的 MR 图像分类器,用于捕获地标定位的图像补丁所传达的局部结构信息和从所有检测到的地标中得出的全局结构信息。我们在三个公共数据集(即 ADNI-1、ADNI-2 和 MIRIAD)中的 1526 个受试者上评估了我们的框架,实验结果表明,我们的框架可以实现优于最先进方法的性能。

相似文献

[1]
Landmark-based deep multi-instance learning for brain disease diagnosis.

Med Image Anal. 2017-10-27

[2]
Anatomical Landmark Based Deep Feature Representation for MR Images in Brain Disease Diagnosis.

IEEE J Biomed Health Inform. 2018-1-10

[3]
Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer's Disease Diagnosis.

IEEE Trans Biomed Eng. 2018-9-12

[4]
Attention-Guided Hybrid Network for Dementia Diagnosis With Structural MR Images.

IEEE Trans Cybern. 2022-4

[5]
Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images.

IEEE Trans Med Imaging. 2020-6

[6]
RNN-based longitudinal analysis for diagnosis of Alzheimer's disease.

Comput Med Imaging Graph. 2019-1-26

[7]
Deep Multi-Task Multi-Channel Learning for Joint Classification and Regression of Brain Status.

Med Image Comput Comput Assist Interv. 2017-9

[8]
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

Neuroinformatics. 2018-10

[9]
Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer's Disease Diagnosis Using Structural MRI.

IEEE Trans Pattern Anal Mach Intell. 2020-4

[10]
Alzheimer's Disease Diagnosis Using Landmark-Based Features From Longitudinal Structural MR Images.

IEEE J Biomed Health Inform. 2017-5-16

引用本文的文献

[1]
Mind the Gap: Does Brain Age Improve Alzheimer's Disease Prediction?

Hum Brain Mapp. 2025-8-15

[2]
Applications of interpretable deep learning in neuroimaging: A comprehensive review.

Imaging Neurosci (Camb). 2024-7-12

[3]
Fuzzy Optimized Attention Network with Multi-Instance Deep Learning (FOAN-MIDL) for Alzheimer's Disease Diagnosis with Structural Magnetic Resonance Imaging (sMRI).

Diagnostics (Basel). 2025-6-14

[4]
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.

J Prev Alzheimers Dis. 2025-5

[5]
MHAGuideNet: a 3D pre-trained guidance model for Alzheimer's Disease diagnosis using 2D multi-planar sMRI images.

BMC Med Imaging. 2024-12-18

[6]
Evaluation of Brain Age as a Specific Marker of Brain Health.

bioRxiv. 2024-11-19

[7]
Early Alzheimer's Disease Detection: A Review of Machine Learning Techniques for Forecasting Transition from Mild Cognitive Impairment.

Diagnostics (Basel). 2024-8-13

[8]
AI for the prediction of early stages of Alzheimer's disease from neuroimaging biomarkers - A narrative review of a growing field.

Neurol Sci. 2024-11

[9]
Machine learning with multimodal neuroimaging data to classify stages of Alzheimer's disease: a systematic review and meta-analysis.

Cogn Neurodyn. 2024-6

[10]
Beta-informativeness-diffusion multilayer graph embedding for brain network analysis.

Front Neurosci. 2024-3-8

本文引用的文献

[1]
Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks.

IEEE Trans Image Process. 2017-6-28

[2]
Alzheimer's Disease Diagnosis Using Landmark-Based Features From Longitudinal Structural MR Images.

IEEE J Biomed Health Inform. 2017-5-16

[3]
Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis.

Med Image Anal. 2017-5-13

[4]
View-aligned hypergraph learning for Alzheimer's disease diagnosis with incomplete multi-modality data.

Med Image Anal. 2016-11-16

[5]
Detecting Anatomical Landmarks for Fast Alzheimer's Disease Diagnosis.

IEEE Trans Med Imaging. 2016-12

[6]
Dissimilarity-Based Ensembles for Multiple Instance Learning.

IEEE Trans Neural Netw Learn Syst. 2016-6

[7]
Multi-Instance Deep Learning: Discover Discriminative Local Anatomies for Bodypart Recognition.

IEEE Trans Med Imaging. 2016-2-3

[8]
A CNN Regression Approach for Real-Time 2D/3D Registration.

IEEE Trans Med Imaging. 2016-1-26

[9]
Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment.

IEEE Trans Med Imaging. 2016-6

[10]
Domain Transfer Learning for MCI Conversion Prediction.

IEEE Trans Biomed Eng. 2015-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索