Centre for Complexity Science, University of Warwick, Coventry, CV4 7AL, UK; School of Mathematics, University of Manchester, Manchester M13 9PL, UK.
Department of Statistical Science, University College London, London, WC1E 6BT, UK.
Math Biosci. 2018 Jul;301:111-120. doi: 10.1016/j.mbs.2018.02.003. Epub 2018 Feb 20.
We present a flexible framework for deriving and quantifying the accuracy of Gaussian process approximations to non-linear stochastic individual-based models of epidemics. We develop this for the SIR and SEIR models, and we show how it can be used to perform quick maximum likelihood inference for the underlying parameters given population estimates of the number of infecteds or cases at given time points. We also show how the unobserved processes can be inferred at the same time as the underlying parameters.
我们提出了一个灵活的框架,用于推导和量化高斯过程对传染病非线性随机个体模型的逼近的准确性。我们针对 SIR 和 SEIR 模型开发了这个框架,并展示了如何在给定特定时间点感染或病例数量的群体估计的情况下,使用它来快速进行最大似然推断,以获得潜在参数。我们还展示了如何在同时推断潜在参数的同时推断未观察到的过程。