Suppr超能文献

阿尔茨海默病的病理连接性概况:一种形态计量学共改变网络分析。

The Pathoconnectivity Profile of Alzheimer's Disease: A Morphometric Coalteration Network Analysis.

作者信息

Manuello Jordi, Nani Andrea, Premi Enrico, Borroni Barbara, Costa Tommaso, Tatu Karina, Liloia Donato, Duca Sergio, Cauda Franco

机构信息

GCS-fMRI, Department of Psychology, Koelliker Hospital, University of Turin, Turin, Italy.

FOCUS Laboratory, Department of Psychology, University of Turin, Turin, Italy.

出版信息

Front Neurol. 2018 Jan 25;8:739. doi: 10.3389/fneur.2017.00739. eCollection 2017.

Abstract

Gray matter alterations are typical features of brain disorders. However, they do not impact on the brain randomly. Indeed, it has been suggested that neuropathological processes can selectively affect certain assemblies of neurons, which typically are at the center of crucial functional networks. Because of their topological centrality, these areas form a that is more likely to be affected by neuropathological processes. In order to identify and study the pattern formed by brain alterations in patients' with Alzheimer's disease (AD), we devised an innovative meta-analytic method for analyzing voxel-based morphometry data. This methodology enabled us to discover that in AD gray matter alterations do not occur randomly across the brain but, on the contrary, follow identifiable patterns of distribution. This alteration pattern exhibits a network-like structure composed of coaltered areas that can be defined as . Within the of AD, we were able to further identify a core subnetwork of coaltered areas that includes the left hippocampus, left and right amygdalae, right parahippocampal gyrus, and right temporal inferior gyrus. In virtue of their network centrality, these brain areas can be thought of as .

摘要

灰质改变是脑部疾病的典型特征。然而,它们并非随机地影响大脑。事实上,有人提出神经病理过程可以选择性地影响某些神经元集合,这些集合通常位于关键功能网络的中心。由于它们的拓扑中心性,这些区域形成了一个更容易受到神经病理过程影响的网络。为了识别和研究阿尔茨海默病(AD)患者脑部改变所形成的模式,我们设计了一种创新的元分析方法来分析基于体素的形态学数据。这种方法使我们发现,在AD中,灰质改变并非在大脑中随机发生,相反,遵循可识别的分布模式。这种改变模式呈现出一种由改变区域组成的类似网络的结构,这些区域可被定义为……在AD的……范围内,我们能够进一步识别出一个由改变区域组成的核心子网,包括左侧海马体、左右杏仁核、右侧海马旁回和右侧颞下回。鉴于它们的网络中心性,这些脑区可被视为……

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67dc/5810291/048f686cb076/fneur-08-00739-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验