Suppr超能文献

利用通话数据预测财务困境——关于社会资本、电话记录与财务困境

Predicting financial trouble using call data-On social capital, phone logs, and financial trouble.

作者信息

Agarwal Rishav Raj, Lin Chia-Ching, Chen Kuan-Ta, Singh Vivek Kumar

机构信息

Institute of Information Science, Academia Sinica, Taipei, Taiwan.

School of Communication and Information, Rutgers University, New Brunswick, New Jersey, United States of America.

出版信息

PLoS One. 2018 Feb 23;13(2):e0191863. doi: 10.1371/journal.pone.0191863. eCollection 2018.

Abstract

An ability to understand and predict financial wellbeing for individuals is of interest to economists, policy designers, financial institutions, and the individuals themselves. According to the Nilson reports, there were more than 3 billion credit cards in use in 2013, accounting for purchases exceeding US$ 2.2 trillion, and according to the Federal Reserve report, 39% of American households were carrying credit card debt from month to month. Prior literature has connected individual financial wellbeing with social capital. However, as yet, there is limited empirical evidence connecting social interaction behavior with financial outcomes. This work reports results from one of the largest known studies connecting financial outcomes and phone-based social behavior (180,000 individuals; 2 years' time frame; 82.2 million monthly bills, and 350 million call logs). Our methodology tackles highly imbalanced dataset, which is a pertinent problem with modelling credit risk behavior, and offers a novel hybrid method that yields improvements over, both, a traditional transaction data only approach, and an approach that uses only call data. The results pave way for better financial modelling of billions of unbanked and underbanked customers using non-traditional metrics like phone-based credit scoring.

摘要

经济学家、政策制定者、金融机构以及个人自身都对理解和预测个人财务状况的能力感兴趣。根据尼尔森报告,2013年有超过30亿张信用卡在使用,消费额超过2.2万亿美元,并且根据美联储报告,39%的美国家庭每月都背负信用卡债务。先前的文献已将个人财务状况与社会资本联系起来。然而,到目前为止,将社会互动行为与财务结果联系起来的实证证据有限。这项研究报告了已知规模最大的将财务结果与基于电话的社会行为联系起来的研究之一的结果(18万人;2年时间框架;8220万张月度账单以及3.5亿条通话记录)。我们的方法解决了高度不平衡的数据集问题,这是建模信用风险行为时的一个相关问题,并提供了一种新颖的混合方法,该方法在传统的仅使用交易数据的方法以及仅使用通话数据的方法上都有改进。这些结果为使用基于电话的信用评分等非传统指标对数十亿无银行账户和银行账户不足的客户进行更好的财务建模铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bde0/5825009/1a6f25be8d49/pone.0191863.g001.jpg

相似文献

1
Predicting financial trouble using call data-On social capital, phone logs, and financial trouble.
PLoS One. 2018 Feb 23;13(2):e0191863. doi: 10.1371/journal.pone.0191863. eCollection 2018.
2
Research on farmers' households credit behavior and social capital acquisition.
Front Psychol. 2022 Nov 22;13:961862. doi: 10.3389/fpsyg.2022.961862. eCollection 2022.
4
Attitudes towards credit and finances among college students in China and the United States.
Int J Psychol. 2013;48(3):389-98. doi: 10.1080/00207594.2011.645486. Epub 2012 Mar 8.
6
A soft voting ensemble learning approach for credit card fraud detection.
Heliyon. 2024 Feb 1;10(3):e25466. doi: 10.1016/j.heliyon.2024.e25466. eCollection 2024 Feb 15.
8
Parents Influence Responsible Credit Use in Young Adults: Empirical Evidence from the United States, France, and Brazil.
J Fam Econ Issues. 2022;43(2):368-383. doi: 10.1007/s10834-021-09792-2. Epub 2021 Aug 24.
9
Sequences of purchases in credit card data reveal lifestyles in urban populations.
Nat Commun. 2018 Aug 20;9(1):3330. doi: 10.1038/s41467-018-05690-8.
10
Unbanked status and use of alternative financial services among minority populations.
J Pension Econ Financ. 2021 Oct;20(4):468-481. doi: 10.1017/s1474747219000052. Epub 2019 Feb 28.

本文引用的文献

1
Cities through the Prism of People's Spending Behavior.
PLoS One. 2016 Feb 5;11(2):e0146291. doi: 10.1371/journal.pone.0146291. eCollection 2016.
2
Evidence That Calls-Based and Mobility Networks Are Isomorphic.
PLoS One. 2015 Dec 29;10(12):e0145091. doi: 10.1371/journal.pone.0145091. eCollection 2015.
3
Daily Rhythms in Mobile Telephone Communication.
PLoS One. 2015 Sep 21;10(9):e0138098. doi: 10.1371/journal.pone.0138098. eCollection 2015.
4
Money Walks: Implicit Mobility Behavior and Financial Well-Being.
PLoS One. 2015 Aug 28;10(8):e0136628. doi: 10.1371/journal.pone.0136628. eCollection 2015.
5
Machine learning: Trends, perspectives, and prospects.
Science. 2015 Jul 17;349(6245):255-60. doi: 10.1126/science.aaa8415.
6
Identity and privacy. Unique in the shopping mall: on the reidentifiability of credit card metadata.
Science. 2015 Jan 30;347(6221):536-9. doi: 10.1126/science.1256297.
7
Persistence of social signatures in human communication.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):942-7. doi: 10.1073/pnas.1308540110. Epub 2014 Jan 6.
8
The predictability of consumer visitation patterns.
Sci Rep. 2013;3:1645. doi: 10.1038/srep01645.
9
Understanding individual human mobility patterns.
Nature. 2008 Jun 5;453(7196):779-82. doi: 10.1038/nature06958.
10
Measuring social capital within health surveys: key issues.
Health Policy Plan. 2002 Mar;17(1):106-11. doi: 10.1093/heapol/17.1.106.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验