Suppr超能文献

身份与隐私。购物中心里的独特之处:信用卡元数据的可再识别性。

Identity and privacy. Unique in the shopping mall: on the reidentifiability of credit card metadata.

机构信息

Media Lab, Massachusetts Institute of Technology (MIT), 20 Amherst Street, Cambridge, MA 02139, USA.

Department of Computer Science, Aarhus University, Aabogade 34, Aarhus, 8200, Denmark.

出版信息

Science. 2015 Jan 30;347(6221):536-9. doi: 10.1126/science.1256297.

Abstract

Large-scale data sets of human behavior have the potential to fundamentally transform the way we fight diseases, design cities, or perform research. Metadata, however, contain sensitive information. Understanding the privacy of these data sets is key to their broad use and, ultimately, their impact. We study 3 months of credit card records for 1.1 million people and show that four spatiotemporal points are enough to uniquely reidentify 90% of individuals. We show that knowing the price of a transaction increases the risk of reidentification by 22%, on average. Finally, we show that even data sets that provide coarse information at any or all of the dimensions provide little anonymity and that women are more reidentifiable than men in credit card metadata.

摘要

大规模的人类行为数据集有可能从根本上改变我们治疗疾病、设计城市或进行研究的方式。然而,元数据包含敏感信息。理解这些数据集的隐私是广泛使用它们的关键,最终也是影响它们的关键。我们研究了 110 万人的信用卡记录 3 个月的数据,结果表明,四个时空点足以唯一重新识别 90%的个体。我们发现,平均而言,了解交易价格会使重新识别的风险增加 22%。最后,我们发现,即使在任何或所有维度上提供粗略信息的数据集中,也几乎没有匿名性,并且在信用卡元数据中,女性比男性更容易被重新识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验