Laboratory of Cellular and Molecular Cardiology, Research Group Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium.
Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium.
PLoS One. 2018 Feb 23;13(2):e0193173. doi: 10.1371/journal.pone.0193173. eCollection 2018.
MicroRNA (miRNA) regulate gene expression through posttranscriptional mRNA degradation or suppression of translation. Many (pre)analytical issues remain to be resolved for miRNA screening with TaqMan Low Density Arrays (TLDA) in plasma samples, such as optimal RNA isolation, preamplification and data normalization. We optimized the TLDA protocol using three RNA isolation protocols and preamplification dilutions. By using 100μL elution volume during RNA isolation and adding a preamplification step without dilution, 49% of wells were amplified. Informative target miRNA were defined as having quantification cycle values ≤35 in at least 20% of samples and low technical variability (CV across 2 duplicates of 1 sample <4%). A total of 218 miRNA was considered informative (= 59% of all target miRNA). Different normalization strategies were compared: exogenous Ath-miR-159a, endogenous RNA U6, and three mathematical normalization techniques: geNorm (Qbase, QB) and NormFinder (NF) normalization algorithms, and global mean calculation. To select the best normalization method, technical variability, biological variability, stability, and the extent to which the normalization method reduces data dispersion were calculated. The geNorm normalization algorithm reduced data dispersion to the greatest extent, while endogenous RNA U6 performed worst. In conclusion, for miRNA profiling in plasma samples using TLDA cards we recommend: 1. Implementing a preamplification step in the TLDA protocol without diluting the final preamplification product 2. A stepwise approach to exclude non-informative miRNA based on quality control parameters 3. Against using snoRNA U6 as normalization method for relative quantification 4. Using the geNorm algorithm as normalization method for relative quantification.
微小 RNA(miRNA)通过转录后 mRNA 降解或翻译抑制来调节基因表达。在血浆样本中使用 TaqMan 低密度阵列(TLDA)进行 miRNA 筛选仍存在许多(预)分析问题,例如最佳 RNA 分离、预扩增和数据标准化。我们使用三种 RNA 分离方案和预扩增稀释度优化了 TLDA 方案。通过在 RNA 分离过程中使用 100μL 洗脱体积并添加不稀释的预扩增步骤,49%的孔被扩增。信息性靶 miRNA 定义为在至少 20%的样本中定量循环值≤35,且技术变异性低(1 个样本的 2 个重复的 CV<4%)。共有 218 个 miRNA 被认为是信息性的(=所有靶 miRNA 的 59%)。比较了不同的归一化策略:外源性 Ath-miR-159a、内源性 RNA U6 和三种数学归一化技术:GeNorm(Qbase,QB)和 NormFinder(NF)归一化算法以及全局均值计算。为了选择最佳的归一化方法,计算了技术变异性、生物学变异性、稳定性以及归一化方法减少数据分散的程度。GeNorm 归一化算法最大限度地减少了数据分散,而内源性 RNA U6 表现最差。总之,对于使用 TLDA 卡进行血浆样本中的 miRNA 分析,我们建议:1. 在 TLDA 方案中实施预扩增步骤,而不稀释最终的预扩增产物;2. 基于质量控制参数逐步排除非信息性 miRNA;3. 反对使用 snoRNA U6 作为相对定量的归一化方法;4. 使用 GeNorm 算法作为相对定量的归一化方法。