Chemistry Department, University of Isfahan, Hezar Jarib, Isfahan, 81746-73441, Iran.
Chemistry Department, University of Isfahan, Hezar Jarib, Isfahan, 81746-73441, Iran.
Colloids Surf B Biointerfaces. 2018 May 1;165:135-143. doi: 10.1016/j.colsurfb.2018.01.052. Epub 2018 Jan 31.
Nickel-cysteine nanostructures (Ni-CysNSs) are prepared by a simple wet chemistry procedure under mild conditions, in which l-cysteine acts both as precursor and structure directing agent. This method involves the reaction of nickel chloride with l-cysteine, followed by simultaneous adjusting the pH in the range of 6-8.5 by addition of an aqueous NaOH solution. The structure and morphology of the prepared products are characterized using various techniques, including X-ray powder diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, CHNS elemental analysis, Field emission scanning electron microscopy (FESEM) and Transmission electron microscopy (TEM). The effects of a variety of synthetic conditions on the structure and morphology of the Ni-CysNSs are studied, including the molar ratio of precursors, dispersing solvent, pH value of the reaction solution, reaction time and reaction temperature. FT-IR measurements reveal that synthesized Ni-CysNSs contain many free carboxylic groups on the surface, which could be used as binding sites to anchor biological molecules in order to develop various bioelectronic devices. In this work, the applicability of synthesized nanostructure in biosensing is studied by using Ni-CysNSs as a platform for covalently immobilization of GOx, as a model enzyme, on the surface. Cyclic voltammetric measurements reveal that the direct electron transfer from the active center of GOx to the glassy carbon electrode facilitated upon its immobilization on the Ni-CysNSs film. More importantly, GOx preserves its native structure and catalytic activity for the oxidation of glucose after immobilization on the Ni-CysNSs surface. The electrocatalytic characteristics of the GC/NiCysNS/GOx electrode toward the oxidation of glucose are investigated by cyclic voltammetry, which displayed acceptable electrical and sensing performance. Simple preparation of Ni-CysNPs and their biocompatibility make them attractive platforms for integration of various biomolecules such as proteine/enzymes with surface.
镍-半胱氨酸纳米结构(Ni-CysNSs)是通过在温和条件下的简单湿化学程序制备的,其中 L-半胱氨酸既作为前体又作为结构导向剂。该方法涉及氯化镍与 L-半胱氨酸的反应,随后通过添加水性 NaOH 溶液将 pH 值同时调整到 6-8.5 的范围内。使用各种技术,包括 X 射线粉末衍射(XRD)、傅里叶变换-红外(FT-IR)光谱、CHNS 元素分析、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM),对制备产物的结构和形态进行了表征。研究了各种合成条件对 Ni-CysNSs 结构和形态的影响,包括前体的摩尔比、分散溶剂、反应溶液的 pH 值、反应时间和反应温度。FT-IR 测量表明,合成的 Ni-CysNSs 表面含有许多游离羧酸基团,这些基团可以作为结合位点来固定生物分子,以开发各种生物电子器件。在这项工作中,通过使用 Ni-CysNSs 作为固定 GOx 的平台,研究了合成纳米结构在生物传感中的适用性,GOx 是一种模型酶。循环伏安测量表明,GOx 的活性中心在固定在 Ni-CysNSs 薄膜上后,其电子可直接转移到玻璃碳电极上。更重要的是,GOx 在固定到 Ni-CysNSs 表面后保留了其天然结构和对葡萄糖氧化的催化活性。通过循环伏安法研究了 GC/NiCysNS/GOx 电极对葡萄糖氧化的电催化特性,显示出可接受的电和传感性能。Ni-CysNPs 的简单制备及其生物相容性使它们成为与表面整合各种生物分子(如蛋白质/酶)的有吸引力的平台。