Division of Hematology & Oncology, Department of Medicine, Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois.
Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
Transl Res. 2018 Jul;197:1-11. doi: 10.1016/j.trsl.2018.01.007. Epub 2018 Feb 2.
Homozygosity for the hemoglobin (Hb) S mutation (HbSS, sickle cell anemia) results in hemoglobin polymerization under hypoxic conditions leading to vaso-occlusion and hemolysis. Sickle cell anemia affects 1:500 African Americans and is a strong risk factor for kidney disease, although the mechanisms are not well understood. Heterozygous inheritance (HbAS; sickle cell trait) affects 1:10 African Americans and is associated with an increased risk for kidney disease in some reports. Using transgenic sickle mice, we investigated the histopathologic, ultrastructural, and gene expression differences with the HbS mutation. Consistent with progressive glomerular damage, we observed progressively greater urine protein concentrations (P = 0.03), glomerular hypertrophy (P = 0.002), and glomerular cellularity (P = 0.01) in HbAA, HbAS, and HbSS mice, respectively. Ultrastructural studies demonstrated progressive podocyte foot process effacement, glomerular basement membrane thickening with reduplication, and tubular villous atrophy with the HbS mutation. Gene expression studies highlighted the differential expression of several genes involved in prostaglandin metabolism (AKR1C18), heme and iron metabolism (HbA-A2, HMOX1, SCL25A37), electrolyte balance (SLC4A1, AQP6), immunity (RSAD2, C3, UBE2O), fatty acid metabolism (FASN), hypoxia hall-mark genes (GCK, SDC3, VEGFA, ETS1, CP, BCL2), as well as genes implicated in other forms of kidney disease (PODXL, ELMO1, FRMD3, MYH9, APOA1). Pathway analysis highlighted increased gene enrichment in focal adhesion, extracellular matrix-receptor interaction, and axon guidance pathways. In summary, using transgenic sickle mice, we observed that inheritance of the HbS mutation is associated with glomerular and tubular damage and identified several candidate genes and pathways for future investigation in sickle cell trait and sickle cell anemia-related kidney disease.
纯合子血红蛋白(Hb)S 突变(HbSS,镰状细胞贫血)导致缺氧条件下血红蛋白聚合,从而导致血管阻塞和溶血。镰状细胞贫血影响每 500 名非裔美国人中的 1 人,是肾脏病的强烈危险因素,尽管其机制尚不清楚。杂合子遗传(HbAS;镰状细胞特征)影响每 10 名非裔美国人中的 1 人,并与一些报告中的肾脏病风险增加相关。使用转基因镰状细胞小鼠,我们研究了与 HbS 突变相关的组织病理学、超微结构和基因表达差异。与进行性肾小球损伤一致,我们观察到 HbAA、HbAS 和 HbSS 小鼠的尿蛋白浓度逐渐增加(P=0.03)、肾小球肥大(P=0.002)和肾小球细胞增多(P=0.01)。超微结构研究表明,随着 HbS 突变,足细胞足突融合逐渐加剧,肾小球基底膜增厚,肾小管绒毛萎缩。基因表达研究突出了几个参与前列腺素代谢(AKR1C18)、血红素和铁代谢(HbA-A2、HMOX1、SCL25A37)、电解质平衡(SLC4A1、AQP6)、免疫(RSAD2、C3、UBE2O)、脂肪酸代谢(FASN)、缺氧标志基因(GCK、SDC3、VEGFA、ETS1、CP、BCL2)以及与其他形式肾脏病相关的基因(PODXL、ELMO1、FRMD3、MYH9、APOA1)的差异表达。途径分析突出了焦点黏附、细胞外基质-受体相互作用和轴突导向途径中的基因富集增加。总之,使用转基因镰状细胞小鼠,我们观察到 HbS 突变的遗传与肾小球和肾小管损伤相关,并确定了几个候选基因和途径,用于进一步研究镰状细胞特征和镰状细胞贫血相关肾脏病。