Suppr超能文献

复值忆阻神经网络的时滞相关动力学分析:连续时间和离散时间情形。

Delay-dependent dynamical analysis of complex-valued memristive neural networks: Continuous-time and discrete-time cases.

机构信息

College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, Xinjiang, China.

College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, Xinjiang, China.

出版信息

Neural Netw. 2018 May;101:33-46. doi: 10.1016/j.neunet.2018.01.015. Epub 2018 Feb 8.

Abstract

This paper considers the delay-dependent stability of memristive complex-valued neural networks (MCVNNs). A novel linear mapping function is presented to transform the complex-valued system into the real-valued system. Under such mapping function, both continuous-time and discrete-time MCVNNs are analyzed in this paper. Firstly, when activation functions are continuous but not Lipschitz continuous, an extended matrix inequality is proved to ensure the stability of continuous-time MCVNNs. Furthermore, if activation functions are discontinuous, a discontinuous adaptive controller is designed to acquire its stability by applying Lyapunov-Krasovskii functionals. Secondly, compared with techniques in continuous-time MCVNNs, the Halanay-type inequality and comparison principle are firstly used to exploit the dynamical behaviors of discrete-time MCVNNs. Finally, the effectiveness of theoretical results is illustrated through numerical examples.

摘要

本文研究了忆阻复值神经网络(MCVNNs)的时滞相关稳定性。提出了一种新的线性映射函数,将复值系统转化为实值系统。在这种映射函数下,本文分析了连续时间和离散时间 MCVNNs。首先,当激活函数连续但非 Lipschitz 连续时,证明了一个扩展矩阵不等式,以确保连续时间 MCVNNs 的稳定性。此外,如果激活函数不连续,通过应用 Lyapunov-Krasovskii 泛函设计一个不连续自适应控制器来获得其稳定性。其次,与连续时间 MCVNNs 的技术相比,首次使用 Halanay 型不等式和比较原理来研究离散时间 MCVNNs 的动态行为。最后,通过数值例子说明了理论结果的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验