Suppr超能文献

将电化学与 TIRF 显微镜结合使用,以及使用荧光假神经递质 FFN102,可在单个囊泡胞吐检测过程中支持荧光信号。

Coupling electrochemistry and TIRF-microscopy with the fluorescent false neurotransmitter FFN102 supports the fluorescence signals during single vesicle exocytosis detection.

机构信息

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.

出版信息

Biophys Chem. 2018 Apr;235:48-55. doi: 10.1016/j.bpc.2018.02.004. Epub 2018 Feb 8.

Abstract

Applications of the Fluorescent False Neurotransmitter FFN102, an analog of biogenic neurotransmitters and a suitable probe for coupled amperometry and TIRFM (total internal reflexion fluorescence microscopy) investigations of exocytotic secretion, were considered here. The electroactivity of FFN102 was shown to very likely arise from the oxidation of its phenolic group through a CE (Chemical-Electrochemical) mechanism. Evidences that the aminoethyl group of FFN102 is the key recognition element by BON N13 cells were also provided. Amperometric measurements were then performed at the single cell level with carbon fiber electrode (CFE) or Indium Tin Oxide (ITO) surfaces. It proved the disparity of kinetic and quantitative parameters of FFN102-stained cells acquired either at cell top and bottom. Moreover, coupled analyses of FFN102 loaded vesicles allowed us to classify three types of optical signals that probably arise from secretion releases thanks to their concomitant detection with an electrochemical spike. Finally, preliminary benefits from the coupling involving FFN102 were reported in terms of origins of overlapped amperometric spikes or assignment of fluorescence extinctions to real exocytotic events.

摘要

本文考虑了荧光假神经递质 FFN102 的应用,它是生物神经递质的类似物,也是用于耦合安培和 TIRFM(全内反射荧光显微镜)研究胞吐分泌的合适探针。FFN102 的电化学活性很可能源于其酚基团通过 CE(化学电化学)机制的氧化。还提供了证据表明,FFN102 的氨基乙基基团是 BON N13 细胞的关键识别元素。然后在单细胞水平上使用碳纤维电极(CFE)或铟锡氧化物(ITO)表面进行安培测量。它证明了在细胞顶部和底部获得的 FFN102 染色细胞的动力学和定量参数的差异。此外,通过对加载囊泡的 FFN102 进行耦合分析,我们能够根据电化学尖峰的同时检测,将三种可能源于分泌释放的光学信号进行分类。最后,报告了涉及 FFN102 的耦合在重叠安培尖峰的起源或荧光消失的分配方面的初步好处,这些好处与真正的胞吐事件有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验