Kapit Eliot
Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA.
Phys Rev Lett. 2018 Feb 2;120(5):050503. doi: 10.1103/PhysRevLett.120.050503.
One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.
构建量子计算机的最大障碍之一是门错误,即量子比特或一组量子比特在门操作期间的状态物理演化与预期的酉变换不匹配。门错误源于控制错误与量子比特与环境相互作用产生的随机单比特错误的综合影响。虽然在减轻控制错误方面已经取得了很大进展,但本征量子比特错误仍然是一个严重问题,限制了现代量子比特架构中的门保真度。同时,近期小型纠错逻辑量子比特设备的发展有望显著延长逻辑态寿命,但将这些改进转化为门保真度的提高是一项复杂的挑战。在本信函中,我们构建了用于小型逻辑量子比特设备上及其之间的门的协议,这些协议继承了父设备对在门操作之前或期间任何时间发生的单比特错误的耐受性。我们考虑了两种这样的设备,一种是三量子比特比特翻转码的无源实现,以及作者自己的[E. 卡皮特,《物理评论快报》116, 150501 (2016年)PRLTAO0031 - 900710.1103/PhysRevLett.116.150501]非常小的逻辑量子比特(VSLQ)设计,并为两者都提出了容错门集。这些模型中的有效逻辑门错误率随着单比特寿命的线性增加呈现超线性错误降低现象,证明了无源纠错能够提高门保真度。使用超导量子比特的标准唯象噪声模型,我们展示了一种适用于VSLQ的现实的通用单比特和双比特门集,其错误率比在单量子比特或量子比特对相同持续时间操作的错误率低一个数量级。这些进展进一步表明,将小型逻辑量子比特纳入基于测量的编码中可以显著提高编码性能。