Li Ziqian, Roy Tanay, Rodríguez Pérez David, Lee Kan-Heng, Kapit Eliot, Schuster David I
James Franck Institute, University of Chicago, Chicago, IL, 60637, USA.
Department of Physics, University of Chicago, Chicago, IL, 60637, USA.
Nat Commun. 2024 Feb 23;15(1):1681. doi: 10.1038/s41467-024-45858-z.
Large-scale quantum computers will inevitably need quantum error correction to protect information against decoherence. Traditional error correction typically requires many qubits, along with high-efficiency error syndrome measurement and real-time feedback. Autonomous quantum error correction instead uses steady-state bath engineering to perform the correction in a hardware-efficient manner. In this work, we develop a new autonomous quantum error correction scheme that actively corrects single-photon loss and passively suppresses low-frequency dephasing, and we demonstrate an important experimental step towards its full implementation with transmons. Compared to uncorrected encoding, improvements are experimentally witnessed for the logical zero, one, and superposition states. Our results show the potential of implementing hardware-efficient autonomous quantum error correction to enhance the reliability of a transmon-based quantum information processor.
大规模量子计算机不可避免地需要量子纠错来保护信息免受退相干影响。传统的纠错通常需要许多量子比特,以及高效的错误综合征测量和实时反馈。相反,自主量子纠错利用稳态量子比特工程以硬件高效的方式执行纠错。在这项工作中,我们开发了一种新的自主量子纠错方案,该方案能主动纠正单光子损失并被动抑制低频退相,并且我们展示了朝着用transmon完全实现该方案迈出的重要实验步骤。与未纠错编码相比,在实验中观察到逻辑零、一和叠加态都有改进。我们的结果显示了实现硬件高效的自主量子纠错以提高基于transmon的量子信息处理器可靠性的潜力。