Ge Ting, Grest Gary S, Rubinstein Michael
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Phys Rev Lett. 2018 Feb 2;120(5):057801. doi: 10.1103/PhysRevLett.120.057801.
We use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G_{GSE}(t) from the mean square displacement of NPs. G_{GSE}(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G_{GSE}(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G_{GSE}(t) emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G_{GSE}(t) approaches G(t) of the ring melt with no entanglement plateau.
我们通过追踪嵌入的非粘性纳米颗粒(NPs)的运动,利用分子模拟来探究缠结聚合物熔体的局部粘弹性。与传统微观流变学一样,广义斯托克斯 - 爱因斯坦关系被用于从纳米颗粒的均方位移中提取有效应力松弛函数(G_{GSE}(t))。将不同纳米颗粒直径(d)的(G_{GSE}(t))与纯聚合物熔体的应力松弛函数(G(t))进行比较。(G_{GSE}(t))与(G(t))的偏差反映了纳米颗粒与熔体动态模式之间的不完全耦合。对于线性聚合物,当(d)超过缠结网尺寸(a)时,(G_{GSE}(t))会出现一个平台期,并且随着(d)的增加,接近纯熔体(G(t))中的缠结平台期。对于环状聚合物,当(d)朝着环状聚合物的跨越尺寸(R)增加时,(G_{GSE}(t))接近环状熔体的(G(t)),且没有缠结平台期。