检验6项已发表的公共卫生服务与系统研究的可重复性。

Examining the Reproducibility of 6 Published Studies in Public Health Services and Systems Research.

作者信息

Harris Jenine K, Wondmeneh Sarah B, Zhao Yiqiang, Leider Jonathon P

机构信息

Brown School, Washington University in St Louis, St Louis, Missouri (Dr Harris, Ms Wondmeneh, and Mr Zhao); and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (Dr Leider).

出版信息

J Public Health Manag Pract. 2019 Mar/Apr;25(2):128-136. doi: 10.1097/PHH.0000000000000694.

Abstract

OBJECTIVE

Research replication, or repeating a study de novo, is the scientific standard for building evidence and identifying spurious results. While replication is ideal, it is often expensive and time consuming. Reproducibility, or reanalysis of data to verify published findings, is one proposed minimum alternative standard. While a lack of research reproducibility has been identified as a serious and prevalent problem in biomedical research and a few other fields, little work has been done to examine the reproducibility of public health research. We examined reproducibility in 6 studies from the public health services and systems research subfield of public health research.

DESIGN

Following the methods described in each of the 6 papers, we computed the descriptive and inferential statistics for each study. We compared our results with the original study results and examined the percentage differences in descriptive statistics and differences in effect size, significance, and precision of inferential statistics. All project work was completed in 2017.

RESULTS

We found consistency between original and reproduced results for each paper in at least 1 of the 4 areas examined. However, we also found some inconsistency. We identified incorrect transcription of results and omitting detail about data management and analyses as the primary contributors to the inconsistencies.

RECOMMENDATIONS

Increasing reproducibility, or reanalysis of data to verify published results, can improve the quality of science. Researchers, journals, employers, and funders can all play a role in improving the reproducibility of science through several strategies including publishing data and statistical code, using guidelines to write clear and complete methods sections, conducting reproducibility reviews, and incentivizing reproducible science.

摘要

目的

研究复制,即重新开展一项全新的研究,是构建证据和识别虚假结果的科学标准。虽然复制是理想的做法,但往往成本高昂且耗时。可重复性,即重新分析数据以验证已发表的研究结果,是一种被提议的最低替代标准。虽然在生物医学研究和其他一些领域,缺乏研究可重复性已被认定为一个严重且普遍的问题,但在检验公共卫生研究的可重复性方面所做的工作很少。我们检验了公共卫生研究中公共卫生服务与系统研究子领域的6项研究的可重复性。

设计

按照6篇论文中各自描述的方法,我们计算了每项研究的描述性统计量和推断性统计量。我们将我们的结果与原始研究结果进行比较,并检验了描述性统计量的百分比差异以及推断性统计量在效应大小、显著性和精确性方面的差异。所有项目工作于2017年完成。

结果

我们发现在所检验的4个领域中,至少在其中1个领域,每篇论文的原始结果与复制结果之间存在一致性。然而,我们也发现了一些不一致之处。我们确定结果转录错误以及遗漏数据管理和分析细节是导致不一致的主要原因。

建议

提高可重复性,即重新分析数据以验证已发表的结果,能够提升科学质量。研究人员、期刊、雇主和资助者都可以通过多种策略在提高科学的可重复性方面发挥作用,这些策略包括发布数据和统计代码、使用指南来撰写清晰完整的方法部分、进行可重复性审查以及激励开展可重复的科学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索