Suppr超能文献

双谱及其与相位-幅度耦合的关系。

The bispectrum and its relationship to phase-amplitude coupling.

机构信息

Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA.

Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA.

出版信息

Neuroimage. 2018 Jun;173:518-539. doi: 10.1016/j.neuroimage.2018.02.033. Epub 2018 Feb 23.

Abstract

Most biological signals are non-Gaussian, reflecting their origins in highly nonlinear physiological systems. A versatile set of techniques for studying non-Gaussian signals relies on the spectral representations of higher moments, known as polyspectra, which describe forms of cross-frequency dependence that do not arise in time-invariant Gaussian signals. The most commonly used of these employ the bispectrum. Recently, other measures of cross-frequency dependence have drawn interest in EEG literature, in particular those which address phase-amplitude coupling (PAC). Here we demonstrate a close relationship between the bispectrum and popular measures of PAC, which we relate to smoothings of the signal bispectrum, making them fundamentally bispectral estimators. Viewed this way, however, conventional PAC measures exhibit some unfavorable qualities, including poor bias properties, lack of correct symmetry and artificial constraints on the spectral range and resolution of the estimate. Moreover, information obscured by smoothing in measures of PAC, but preserved in standard bispectral estimators, may be critical for distinguishing nested oscillations from transient signal features and other non-oscillatory causes of "spurious" PAC. We propose guidelines for gauging the nature and origin of cross-frequency coupling with bispectral statistics. Beyond clarifying the relationship between PAC and the bispectrum, the present work lays out a general framework for the interpretation of the bispectrum, which extends to other higher-order spectra. In particular, this framework holds promise for the detailed identification of signal features related to both nested oscillations and transient phenomena. We conclude with a discussion of some broader theoretical implications of this framework and highlight promising directions for future development.

摘要

大多数生物信号是非高斯的,反映了它们源自高度非线性的生理系统。研究非高斯信号的一套通用技术依赖于更高阶矩的谱表示,称为多谱,它描述了在时不变高斯信号中不会出现的交叉频率依赖性形式。其中最常用的是双谱。最近,其他一些描述交叉频率依赖性的度量方法在 EEG 文献中引起了关注,特别是那些解决相位-幅度耦合 (PAC) 的度量方法。在这里,我们展示了双谱和流行的 PAC 度量方法之间的密切关系,我们将它们与信号双谱的平滑相关联,使它们从根本上成为双谱估计量。然而,从这种角度来看,传统的 PAC 度量方法存在一些不利的性质,包括较差的偏差特性、缺乏正确的对称性以及对估计的频谱范围和分辨率的人为限制。此外,在 PAC 度量方法中被平滑掩盖的信息,但在标准双谱估计中保留下来的信息,对于区分嵌套振荡与瞬态信号特征以及“虚假”PAC 的其他非振荡原因可能是至关重要的。我们提出了用双谱统计来衡量交叉频率耦合的性质和来源的指南。除了澄清 PAC 与双谱之间的关系外,本工作还为解释双谱建立了一个通用框架,该框架扩展到其他高阶谱。特别是,该框架有望对与嵌套振荡和瞬态现象相关的信号特征进行详细识别。最后,我们讨论了该框架的一些更广泛的理论意义,并强调了未来发展的有前景的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验