Suppr超能文献

使用自适应分解以高频率分辨率检测相位-振幅耦合。

Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions.

作者信息

Pittman-Polletta Benjamin, Hsieh Wan-Hsin, Kaur Satvinder, Lo Men-Tzung, Hu Kun

机构信息

Medical Biodynamics Program, Division of Sleep Medicine, Brigham & Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Department of Mathematics and Statistics, Boston University, Boston, MA, USA.

Department of Mathematics and Statistics, Boston University, Boston, MA, USA; Research Center for Adaptive Data Analysis, National Central University, Chungli, Taiwan, ROC.

出版信息

J Neurosci Methods. 2014 Apr 15;226:15-32. doi: 10.1016/j.jneumeth.2014.01.006. Epub 2014 Jan 19.

Abstract

BACKGROUND

Phase-amplitude coupling (PAC)--the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm - has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments.

NEW METHOD

To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques - such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations.

COMPARISON WITH EXISTING METHODS

We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data.

CONCLUSIONS

Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms.

摘要

背景

相位-振幅耦合(PAC)——一种节律的振幅对另一种较低频率节律的相位的依赖性——最近已被用于阐明神经生理活动中的跨频率协调。测量PAC的一个关键步骤是分解数据以获得感兴趣的节律成分。当前的PAC评估方法采用基于窄带傅里叶的滤波器,该滤波器假设生物节律是平稳的谐波振荡。然而,生物信号经常包含不规则和非平稳特征,这可能会干扰感兴趣的节律并使共模图解释复杂化,尤其是当频率分辨率受短数据段限制时。

新方法

为了在PAC测量中更好地考虑非平稳性,同时保持敏锐的频率分辨率,即使对于短数据段也是如此,我们引入了一种新的PAC评估方法,该方法利用自适应且更普遍的宽带分解技术——如经验模态分解(EMD)。为了获得高频率分辨率的PAC测量结果,我们的方法根据这些振荡的时间局部频率在频率空间上分布与宽带振荡对相关的PAC。

与现有方法的比较

我们将我们新颖的自适应方法与窄带共模图方法在各种短持续时间的模拟信号上进行比较,系统地研究不同类型的非平稳性如何影响这些方法,以及在脑电图数据上的情况。

结论

我们的结果表明:(1)窄带滤波会导致PAC频率分辨率差,以及PAC评估中的不准确和假阴性;(2)我们的自适应方法获得了更好的PAC频率分辨率,并且比传统共模图更能抵抗非平稳性和伪迹。

相似文献

1
Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions.
J Neurosci Methods. 2014 Apr 15;226:15-32. doi: 10.1016/j.jneumeth.2014.01.006. Epub 2014 Jan 19.
2
Phase-amplitude coupling analysis for seizure evolvement using Hilbert Huang Transform.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1022-1025. doi: 10.1109/EMBC.2016.7590876.
3
Empirical analysis of phase-amplitude coupling approaches.
PLoS One. 2019 Jul 9;14(7):e0219264. doi: 10.1371/journal.pone.0219264. eCollection 2019.
4
Dissociating harmonic and non-harmonic phase-amplitude coupling in the human brain.
Neuroimage. 2021 Feb 15;227:117648. doi: 10.1016/j.neuroimage.2020.117648. Epub 2020 Dec 15.
5
Assessment of dynamic phase amplitude coupling using matching pursuit.
J Neurosci Methods. 2022 Jul 1;376:109610. doi: 10.1016/j.jneumeth.2022.109610. Epub 2022 Apr 30.
6
Time-Frequency Based Phase-Amplitude Coupling Measure For Neuronal Oscillations.
Sci Rep. 2019 Aug 27;9(1):12441. doi: 10.1038/s41598-019-48870-2.
7
Addressing Pitfalls in Phase-Amplitude Coupling Analysis with an Extended Modulation Index Toolbox.
Neuroinformatics. 2021 Apr;19(2):319-345. doi: 10.1007/s12021-020-09487-3.
8
Measuring phase-amplitude coupling between neural oscillations of different frequencies via the Wasserstein distance.
J Neurosci Methods. 2022 May 15;374:109578. doi: 10.1016/j.jneumeth.2022.109578. Epub 2022 Mar 23.
9
The bispectrum and its relationship to phase-amplitude coupling.
Neuroimage. 2018 Jun;173:518-539. doi: 10.1016/j.neuroimage.2018.02.033. Epub 2018 Feb 23.
10
Toward a proper estimation of phase-amplitude coupling in neural oscillations.
J Neurosci Methods. 2014 Mar 30;225:42-56. doi: 10.1016/j.jneumeth.2014.01.002. Epub 2014 Jan 19.

引用本文的文献

2
Improving working memory by electrical stimulation and cross-frequency coupling.
Mol Brain. 2024 Oct 1;17(1):72. doi: 10.1186/s13041-024-01142-1.
4
Cross-Frequency Coupling and Intelligent Neuromodulation.
Cyborg Bionic Syst. 2023 May 31;4:0034. doi: 10.34133/cbsystems.0034. eCollection 2023.
5
10 Minutes Frontal 40 Hz tACS-Effects on Working Memory Tested by Luck-Vogel Task.
Behav Sci (Basel). 2022 Dec 31;13(1):39. doi: 10.3390/bs13010039.
6
Frequency Nesting Interactions in the Subthalamic Nucleus Correlate With the Step Phases for Parkinson's Disease.
Front Physiol. 2022 Apr 29;13:890753. doi: 10.3389/fphys.2022.890753. eCollection 2022.
7
Revealing the Dynamic Nature of Amplitude Modulated Neural Entrainment With Holo-Hilbert Spectral Analysis.
Front Neurosci. 2021 Aug 5;15:673369. doi: 10.3389/fnins.2021.673369. eCollection 2021.
8
Comparison of signal decomposition techniques for analysis of human cortical signals.
J Neural Eng. 2020 Oct 13;17(5):056014. doi: 10.1088/1741-2552/abb63b.
9
Waveform changes with the evolution of beta bursts in the human subthalamic nucleus.
Clin Neurophysiol. 2020 Sep;131(9):2086-2099. doi: 10.1016/j.clinph.2020.05.035. Epub 2020 Jun 29.
10
Time-Frequency Based Phase-Amplitude Coupling Measure For Neuronal Oscillations.
Sci Rep. 2019 Aug 27;9(1):12441. doi: 10.1038/s41598-019-48870-2.

本文引用的文献

1
Glutamatergic signaling from the parabrachial nucleus plays a critical role in hypercapnic arousal.
J Neurosci. 2013 May 1;33(18):7627-40. doi: 10.1523/JNEUROSCI.0173-13.2013.
2
A nonlinear dynamic approach reveals a long-term stroke effect on cerebral blood flow regulation at multiple time scales.
PLoS Comput Biol. 2012;8(7):e1002601. doi: 10.1371/journal.pcbi.1002601. Epub 2012 Jul 12.
3
Phase transitions in physiologic coupling.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10181-6. doi: 10.1073/pnas.1204568109. Epub 2012 Jun 12.
4
Cross-frequency coupling of brain oscillations in studying motivation and emotion.
Motiv Emot. 2012 Mar;36(1):46-54. doi: 10.1007/s11031-011-9237-6. Epub 2011 Jul 31.
5
Cross-frequency phase-phase coupling between θ and γ oscillations in the hippocampus.
J Neurosci. 2012 Jan 11;32(2):423-35. doi: 10.1523/JNEUROSCI.4122-11.2012.
6
Selective coupling between theta phase and neocortical fast gamma oscillations during REM-sleep in mice.
PLoS One. 2011;6(12):e28489. doi: 10.1371/journal.pone.0028489. Epub 2011 Dec 5.
7
Theta phase modulates multiple layer-specific oscillations in the CA1 region.
Cereb Cortex. 2012 Oct;22(10):2404-14. doi: 10.1093/cercor/bhr319. Epub 2011 Nov 10.
8
The role of phase synchronization in memory processes.
Nat Rev Neurosci. 2011 Feb;12(2):105-18. doi: 10.1038/nrn2979.
9
The functional role of cross-frequency coupling.
Trends Cogn Sci. 2010 Nov;14(11):506-15. doi: 10.1016/j.tics.2010.09.001.
10
The temporal structures and functional significance of scale-free brain activity.
Neuron. 2010 May 13;66(3):353-69. doi: 10.1016/j.neuron.2010.04.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验