PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China.
Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
Sci Total Environ. 2018 Jul 15;630:349-356. doi: 10.1016/j.scitotenv.2018.02.219. Epub 2018 Feb 23.
Shale gas is likely to play a major role in China's transition away from coal. In addition to technological and infrastructural constraints, the main challenges to China's sustainable shale gas development are sufficient shale gas production, water availability, and adequate wastewater management. Here we present, for the first time, actual data of shale gas production and its water footprint from the Weiyuan gas field, one of the major gas fields in Sichuan Basin. We show that shale gas production rates during the first 12 months (24 million m per well) are similar to gas production rates in U.S. shale basins. The amount of water used for hydraulic fracturing (34,000 m per well) and the volume of flowback and produced (FP) water in the first 12 months (19,800 m per well) in Sichuan Basin are also similar to the current water footprints of hydraulic fracturing in U.S. basins. We present salinity data of the FP water (5000 to 40,000 mgCl/L) in Sichuan Basin and the treatment operations, which include sedimentation, dilution with fresh water, and recycling of the FP water for hydraulic fracturing. We utilize the water use data, empirical decline rates of shale gas and FP water productions in Sichuan Basin to generate two prediction models for water use for hydraulic fracturing and FP water production upon achieving China's goals to generate 100 billion m of shale gas by 2030. The first model utilizes the current water use and FP production data, and the second assumes a yearly 5% intensification of the hydraulic fracturing process. The predicted water use for hydraulic fracturing in 2030 (50-65 million m per year), FP water production (50-55 million m per year), and fresh water dilution of FP water (25 million m per year) constitute a water footprint that is much smaller than current water consumption and wastewater generation for coal mining, but higher than those of conventional gas production in China. Given estimates for water availability in Sichuan Basin, our predictions suggest that water might not be a limiting factor for future large-scale shale gas development in Sichuan Basin.
页岩气在中国向煤炭的过渡过程中可能发挥重要作用。除了技术和基础设施方面的限制外,中国页岩气可持续发展的主要挑战是要有足够的页岩气产量、水资源供应和适当的废水管理。在这里,我们首次提供了来自威远气田(四川盆地主要气田之一)的页岩气产量及其水足迹的实际数据。我们表明,在头 12 个月(每口井 2400 万立方米)内,页岩气的生产速率与美国页岩气盆地的生产速率相似。用于水力压裂的用水量(每口井 34000 立方米)和头 12 个月的返排和产出(FP)水量(每口井 19800 立方米)与美国盆地目前水力压裂的水足迹也相似。我们提供了四川盆地 FP 水(5000 至 40000mgCl/L)的盐度数据以及处理操作,包括沉降、淡水稀释和 FP 水的再循环用于水力压裂。我们利用水的使用数据、四川盆地页岩气和 FP 水产量的经验递减率,生成了两个预测模型,用于水力压裂和 FP 水生产的用水量,以实现中国到 2030 年生产 1000 亿立方米页岩气的目标。第一个模型利用当前的水使用和 FP 生产数据,第二个模型假设水力压裂过程每年强化 5%。到 2030 年,水力压裂用水量(每年 5000 万至 6500 万立方米)、FP 水产量(每年 5000 万至 5500 万立方米)和 FP 水的淡水稀释量(每年 2500 万立方米)构成的水足迹远小于当前的煤炭开采用水量和废水产生量,但高于中国常规天然气的用水量。鉴于四川盆地的水资源供应估计,我们的预测表明,未来四川盆地大规模页岩气开发可能不会受到水资源的限制。