Fujita Toshitsugu, Yuno Miyuki, Fujii Hodaka
Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
BMC Res Notes. 2018 Feb 27;11(1):154. doi: 10.1186/s13104-018-3262-4.
Previously, we developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology, which isolates specific genomic regions while preserving their molecular interactions. In enChIP, the locus of interest is tagged with engineered DNA-binding molecules such as the clustered regularly interspaced short palindromic repeats (CRISPR) system, consisting of a catalytically inactive form of Cas9 (dCas9) and guide RNA, followed by affinity purification of the tagged locus to allow identification of associated molecules. In our previous studies, we used a 3xFLAG-tagged CRISPR system from Streptococcus pyogenes (S. pyogenes). In this study, to increase the flexibility of enChIP, we used the CRISPR system from Staphylococcus aureus (S. aureus) along with different epitope tags.
We generated a plasmid expressing S. aureus dCas9 (Sa-dCas9) fused to a nuclear localization signal (NLS) and a 3xFLAG-tag (Sa-dCas9-3xFLAG). The yields of enChIP using Sa-dCas9-3xFLAG were comparable to those using S. pyogenes dCas9 fused with an NLS and a 3xFLAG-tag (3xFLAG-Sp-dCas9). We also generated another enChIP system using Sp-dCas9 fused with an NLS and a 2xAM-tag (Sp-dCas9-2xAM). We obtained high enChIP yields using this system as well. Our findings indicate that these tools will increase the flexibility of enChIP analysis.
此前,我们开发了工程化DNA结合分子介导的染色质免疫沉淀(enChIP)技术,该技术在保留特定基因组区域分子相互作用的同时对其进行分离。在enChIP中,感兴趣的基因座用工程化DNA结合分子进行标记,如成簇规律间隔短回文重复序列(CRISPR)系统,该系统由催化失活形式的Cas9(dCas9)和引导RNA组成,随后对标记的基因座进行亲和纯化,以鉴定相关分子。在我们之前的研究中,我们使用了来自化脓性链球菌(S. pyogenes)的3xFLAG标记的CRISPR系统。在本研究中,为了提高enChIP的灵活性,我们使用了来自金黄色葡萄球菌(S. aureus)的CRISPR系统以及不同的表位标签。
我们构建了一个表达与核定位信号(NLS)和3xFLAG标签融合的金黄色葡萄球菌dCas9(Sa-dCas9)的质粒(Sa-dCas9-3xFLAG)。使用Sa-dCas9-3xFLAG进行enChIP的产量与使用与NLS和3xFLAG标签融合的化脓性链球菌dCas9(3xFLAG-Sp-dCas9)的产量相当。我们还构建了另一个enChIP系统,使用与NLS和2xAM标签融合的Sp-dCas9(Sp-dCas9-2xAM)。使用该系统我们也获得了较高的enChIP产量。我们的研究结果表明,这些工具将提高enChIP分析的灵活性。