Suppr超能文献

使用不同CRISPR直系同源物和表位标签的enChIP系统。

enChIP systems using different CRISPR orthologues and epitope tags.

作者信息

Fujita Toshitsugu, Yuno Miyuki, Fujii Hodaka

机构信息

Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.

Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

出版信息

BMC Res Notes. 2018 Feb 27;11(1):154. doi: 10.1186/s13104-018-3262-4.

Abstract

OBJECTIVE

Previously, we developed the engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) technology, which isolates specific genomic regions while preserving their molecular interactions. In enChIP, the locus of interest is tagged with engineered DNA-binding molecules such as the clustered regularly interspaced short palindromic repeats (CRISPR) system, consisting of a catalytically inactive form of Cas9 (dCas9) and guide RNA, followed by affinity purification of the tagged locus to allow identification of associated molecules. In our previous studies, we used a 3xFLAG-tagged CRISPR system from Streptococcus pyogenes (S. pyogenes). In this study, to increase the flexibility of enChIP, we used the CRISPR system from Staphylococcus aureus (S. aureus) along with different epitope tags.

RESULTS

We generated a plasmid expressing S. aureus dCas9 (Sa-dCas9) fused to a nuclear localization signal (NLS) and a 3xFLAG-tag (Sa-dCas9-3xFLAG). The yields of enChIP using Sa-dCas9-3xFLAG were comparable to those using S. pyogenes dCas9 fused with an NLS and a 3xFLAG-tag (3xFLAG-Sp-dCas9). We also generated another enChIP system using Sp-dCas9 fused with an NLS and a 2xAM-tag (Sp-dCas9-2xAM). We obtained high enChIP yields using this system as well. Our findings indicate that these tools will increase the flexibility of enChIP analysis.

摘要

目的

此前,我们开发了工程化DNA结合分子介导的染色质免疫沉淀(enChIP)技术,该技术在保留特定基因组区域分子相互作用的同时对其进行分离。在enChIP中,感兴趣的基因座用工程化DNA结合分子进行标记,如成簇规律间隔短回文重复序列(CRISPR)系统,该系统由催化失活形式的Cas9(dCas9)和引导RNA组成,随后对标记的基因座进行亲和纯化,以鉴定相关分子。在我们之前的研究中,我们使用了来自化脓性链球菌(S. pyogenes)的3xFLAG标记的CRISPR系统。在本研究中,为了提高enChIP的灵活性,我们使用了来自金黄色葡萄球菌(S. aureus)的CRISPR系统以及不同的表位标签。

结果

我们构建了一个表达与核定位信号(NLS)和3xFLAG标签融合的金黄色葡萄球菌dCas9(Sa-dCas9)的质粒(Sa-dCas9-3xFLAG)。使用Sa-dCas9-3xFLAG进行enChIP的产量与使用与NLS和3xFLAG标签融合的化脓性链球菌dCas9(3xFLAG-Sp-dCas9)的产量相当。我们还构建了另一个enChIP系统,使用与NLS和2xAM标签融合的Sp-dCas9(Sp-dCas9-2xAM)。使用该系统我们也获得了较高的enChIP产量。我们的研究结果表明,这些工具将提高enChIP分析的灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4349/5828479/7a4c5f51a36a/13104_2018_3262_Fig1_HTML.jpg

相似文献

1
enChIP systems using different CRISPR orthologues and epitope tags.
BMC Res Notes. 2018 Feb 27;11(1):154. doi: 10.1186/s13104-018-3262-4.
2
An enChIP system for the analysis of bacterial genome functions.
BMC Res Notes. 2018 Jun 14;11(1):387. doi: 10.1186/s13104-018-3486-3.
3
MSCV-based retroviral plasmids expressing 3xFLAG-Sp-dCas9 for enChIP analysis.
Biol Methods Protoc. 2021 Jul 9;6(1):bpab013. doi: 10.1093/biomethods/bpab013. eCollection 2021.
4
Transgenic mouse lines expressing the 3xFLAG-dCas9 protein for enChIP analysis.
Genes Cells. 2018 Apr;23(4):318-325. doi: 10.1111/gtc.12573. Epub 2018 Feb 26.
5
An enChIP system for the analysis of genome functions in budding yeast.
Biol Methods Protoc. 2022 Oct 17;7(1):bpac025. doi: 10.1093/biomethods/bpac025. eCollection 2022.
10
Identification of physical interactions between genomic regions by enChIP-Seq.
Genes Cells. 2017 Jun;22(6):506-520. doi: 10.1111/gtc.12492. Epub 2017 May 5.

引用本文的文献

1
Identification of Proteins Associated with Stably Integrated Maize Tandem Repeat Transgene Chromatin.
Plants (Basel). 2025 Jun 17;14(12):1863. doi: 10.3390/plants14121863.
2
CRISPR/Cas9 Landscape: Current State and Future Perspectives.
Int J Mol Sci. 2023 Nov 8;24(22):16077. doi: 10.3390/ijms242216077.
3
Active transcription and Orc1 drive chromatin association of the AAA+ ATPase Pch2 during meiotic G2/prophase.
PLoS Genet. 2020 Jun 22;16(6):e1008905. doi: 10.1371/journal.pgen.1008905. eCollection 2020 Jun.
4
Purification of specific DNA species using the CRISPR system.
Biol Methods Protoc. 2019 Jul 8;4(1):bpz008. doi: 10.1093/biomethods/bpz008. eCollection 2019.
5
Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes.
Nat Commun. 2020 Jan 24;11(1):504. doi: 10.1038/s41467-020-14331-y.
6
Targeting Hepatitis B Virus Covalently Closed Circular DNA and Hepatitis B Virus X Protein: Recent Advances and New Approaches.
ACS Infect Dis. 2019 Oct 11;5(10):1657-1667. doi: 10.1021/acsinfecdis.9b00249. Epub 2019 Sep 27.

本文引用的文献

2
Identification of physical interactions between genomic regions by enChIP-Seq.
Genes Cells. 2017 Jun;22(6):506-520. doi: 10.1111/gtc.12492. Epub 2017 May 5.
3
5
Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.
Cell. 2016 Jan 14;164(1-2):29-44. doi: 10.1016/j.cell.2015.12.035.
6
Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition.
Nat Biotechnol. 2015 Dec;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub 2015 Nov 2.
7
Identification of non-coding RNAs associated with telomeres using a combination of enChIP and RNA sequencing.
PLoS One. 2015 Apr 13;10(4):e0123387. doi: 10.1371/journal.pone.0123387. eCollection 2015.
8
A CRISPR view of development.
Genes Dev. 2014 Sep 1;28(17):1859-72. doi: 10.1101/gad.248252.114.
9
Identification of proteins associated with an IFNγ-responsive promoter by a retroviral expression system for enChIP using CRISPR.
PLoS One. 2014 Jul 22;9(7):e103084. doi: 10.1371/journal.pone.0103084. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验