Suppr超能文献

用于预测 Lu-octreotate 疗效的血液 PRRT 基因组特征。

PRRT genomic signature in blood for prediction of Lu-octreotate efficacy.

机构信息

Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 77, New York, NY, 10065, USA.

LuGenIum Consortium, Milan, Rotterdam, London, Bad Berka, 54 Portland Place, London, W1B1DY, UK.

出版信息

Eur J Nucl Med Mol Imaging. 2018 Jul;45(7):1155-1169. doi: 10.1007/s00259-018-3967-6. Epub 2018 Feb 26.

Abstract

BACKGROUND

Peptide receptor radionuclide therapy (PRRT) utilizes somatostatin receptor (SSR) overexpression on neuroendocrine tumors (NET) to deliver targeted radiotherapy. Intensity of uptake at imaging is considered related to efficacy but has low sensitivity. A pretreatment strategy to determine individual PRRT response remains a key unmet need. NET transcript expression in blood integrated with tumor grade provides a PRRT predictive quotient (PPQ) which stratifies PRRT "responders" from "non-responders". This study clinically validates the utility of the PPQ in NETs.

METHODS

The development and validation of the PPQ was undertaken in three independent Lu-PRRT treated cohorts. Specificity was tested in two separate somatostatin analog-treated cohorts. Prognostic value of the marker was defined in a cohort of untreated patients. The developmental cohort included lung and gastroenteropancreatic [GEP] NETs (n = 72) from IRST Meldola, Italy. The majority were GEP (71%) and low grade (86% G1-G2). Prospective validation cohorts were from Zentralklinik Bad Berka, Germany (n = 44), and Erasmus Medical Center, Rotterdam, Netherlands (n = 42). Each cohort included predominantly well differentiated, low grade (86-95%) lung and GEP-NETs. The non-PRRT comparator cohorts included SSA cohort I, n = 28 (100% low grade, 100% GEP-NET); SSA cohort II, n = 51 (98% low grade; 76% GEP-NET); and an untreated cohort, n = 44 (64% low grade; 91% GEP-NET). Baseline evaluations included clinical information (disease status, grade, SSR) and biomarker (CgA). NET blood gene transcripts (n = 8: growth factor signaling and metabolism) were measured pre-therapy and integrated with tumor Ki67 using a logistic regression model. This provided a binary output: "predicted responder" (PPQ+); "predicted non-responder" (PPQ-). Treatment response was evaluated using RECIST criteria [Responder (stable, partial and complete response) vs Non-Responder)]. Sample measurement and analyses were blinded to study outcome. Statistical evaluation included Kaplan-Meier survival and standard test evaluation analyses.

RESULTS

In the developmental cohort, 56% responded to PRRT. The PPQ predicted 100% of responders and 84% of non-responders (accuracy: 93%). In the two validation cohorts (response: 64-79%), the PPQ was 95% accurate (Bad Berka: PPQ + =97%, PPQ- = 93%; Rotterdam: PPQ + =94%, PPQ- = 100%). Overall, the median PFS was not reached in PPQ+ vs PPQ- (10-14 months; HR: 18-77, p < 0.0001). In the comparator cohorts, the predictor (PPQ) was 47-50% accurate for SSA-treatment and 50% as a prognostic. No differences in PFS were respectively noted (PPQ+: 10-12 months vs. PPQ-: 9-15 months).

CONCLUSION

The PPQ derived from circulating NET specific genes and tumor grade prior to the initiation of therapy is a highly specific predictor of the efficacy of PRRT with an accuracy of 95%.

摘要

背景

肽受体放射性核素疗法(PRRT)利用生长抑素受体(SSR)在神经内分泌肿瘤(NET)上的过度表达来提供靶向放射治疗。在成像中的摄取强度被认为与疗效相关,但敏感性较低。确定个体 PRRT 反应的预处理策略仍然是一个未满足的关键需求。NET 转录物在血液中的表达与肿瘤分级相结合提供了 PRRT 预测商数(PPQ),可将 PRRT“应答者”与“非应答者”区分开来。本研究在 NET 中临床验证了 PPQ 的效用。

方法

在三个独立的 Lu-PRRT 治疗队列中进行了 PPQ 的开发和验证。在两个单独的生长抑素类似物治疗队列中测试了特异性。在未经治疗的患者队列中定义了该标志物的预后价值。发展队列包括意大利IRST Meldola 的肺和胃肠胰腺 [GEP] NET(n=72)。大多数是 GEP(71%)和低级别(86%G1-G2)。前瞻性验证队列来自德国 Bad Berka 的 Zentralklinik(n=44)和荷兰鹿特丹的 Erasmus Medical Center(n=42)。每个队列均包括主要分化良好、低级别(86-95%)的肺和 GEP-NET。非 PRRT 对照组包括 SSA 队列 I,n=28(100%低级别,100% GEP-NET);SSA 队列 II,n=51(98%低级别;76% GEP-NET);和未经治疗的队列,n=44(64%低级别;91% GEP-NET)。基线评估包括临床信息(疾病状态、分级、SSR)和生物标志物(CgA)。在治疗前测量了 NET 血液基因转录物(n=8:生长因子信号和代谢),并使用逻辑回归模型与肿瘤 Ki67 进行了整合。这提供了一个二进制输出:“预测应答者”(PPQ+);“预测非应答者”(PPQ-)。使用 RECIST 标准[应答者(稳定、部分和完全缓解)与非应答者)评估治疗反应。样本测量和分析对研究结果进行了盲法处理。统计评估包括 Kaplan-Meier 生存和标准测试评估分析。

结果

在发展队列中,56%的患者对 PRRT 有反应。PPQ 预测了 100%的应答者和 84%的非应答者(准确性:93%)。在两个验证队列(反应:64-79%)中,PPQ 的准确率为 95%(Bad Berka:PPQ+=97%,PPQ-=93%;鹿特丹:PPQ+=94%,PPQ-=100%)。总体而言,PPQ+与 PPQ-的中位无进展生存期未达到(10-14 个月;HR:18-77,p<0.0001)。在对照组队列中,该预测因子(PPQ)对 SSA 治疗的准确率为 47-50%,对预后的准确率为 50%。分别观察到无进展生存期无差异(PPQ+:10-12 个月与 PPQ-:9-15 个月)。

结论

在开始治疗前从循环 NET 特异性基因和肿瘤分级中得出的 PPQ 是 PRRT 疗效的高度特异性预测因子,准确率为 95%。

相似文献

1
PRRT genomic signature in blood for prediction of Lu-octreotate efficacy.用于预测 Lu-octreotate 疗效的血液 PRRT 基因组特征。
Eur J Nucl Med Mol Imaging. 2018 Jul;45(7):1155-1169. doi: 10.1007/s00259-018-3967-6. Epub 2018 Feb 26.

引用本文的文献

本文引用的文献

1
The safety of available treatments options for neuroendocrine tumors.神经内分泌肿瘤现有治疗方案的安全性。
Expert Opin Drug Saf. 2017 Oct;16(10):1149-1161. doi: 10.1080/14740338.2017.1354984. Epub 2017 Jul 20.
5
Radionuclide Therapy for Neuroendocrine Tumors.神经内分泌肿瘤的放射性核素治疗
Curr Oncol Rep. 2017 Feb;19(2):9. doi: 10.1007/s11912-017-0567-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验