Department of Pharmaceutical and Pharmacological Sciences, School of Medicine-University of Padua, Italy.
IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy.
Neurobiol Dis. 2018 Jun;114:129-139. doi: 10.1016/j.nbd.2018.02.010. Epub 2018 Feb 24.
There is growing evidence that the sequence variation of mitochondrial DNA (mtDNA), which clusters in population- and/or geographic-specific haplogroups, may result in functional effects that, in turn, become relevant in disease predisposition or protection, interaction with environmental factors and ultimately in modulating longevity. To unravel functional differences between mtDNA haplogroups we here employed transmitochondrial cytoplasmic hybrid cells (cybrids) grown in galactose medium, a culture condition that forces oxidative phosphorylation, and in the presence of rotenone, the classic inhibitor of respiratory Complex I. Under this experimental paradigm we assessed functional parameters such as cell viability and respiration, ATP synthesis, reactive oxygen species production and mtDNA copy number. Our analyses show that haplogroup J1, which is common in western Eurasian populations, is the most sensitive to rotenone, whereas K1 mitogenomes orchestrate the best compensation, possibly because of the haplogroup-specific missense variants impinging on Complex I function. Remarkably, haplogroups J1 and K1 fit the genetic associations previously established with Leber's hereditary optic neuropathy (LHON) for J1, as a penetrance enhancer, and with Parkinson's disease (PD) for K1, as a protective background. Our findings provide functional evidences supporting previous well-established genetic associations of specific haplogroups with two neurodegenerative pathologies, LHON and PD. Our experimental paradigm is instrumental to highlighting the subtle functional differences characterizing mtDNA haplogroups, which will be increasingly needed to dissect the role of mtDNA genetic variation in health, disease and longevity.
越来越多的证据表明,线粒体 DNA(mtDNA)的序列变异会聚类成具有群体和/或地理特异性的单倍群,这些变异可能导致功能效应,进而在疾病易感性或保护、与环境因素相互作用以及最终调节寿命方面产生影响。为了揭示 mtDNA 单倍群之间的功能差异,我们在这里使用了在半乳糖培养基中生长的传递线粒体细胞质杂种(cybrids),这是一种迫使氧化磷酸化的培养条件,并在经典的呼吸复合物 I 抑制剂鱼藤酮存在的情况下。在这种实验范式下,我们评估了细胞活力和呼吸、ATP 合成、活性氧产生和 mtDNA 拷贝数等功能参数。我们的分析表明,在西方欧亚人群中常见的单倍群 J1 对鱼藤酮最为敏感,而 K1 线粒体基因组则能很好地协调补偿,这可能是由于单倍群特异性的错义变体影响了复合物 I 的功能。值得注意的是,单倍群 J1 和 K1 符合先前与 Leber 遗传性视神经病变(LHON)的遗传关联,J1 作为外显增强子,K1 作为帕金森病(PD)的保护背景。我们的发现提供了功能证据,支持特定单倍群与两种神经退行性疾病 LHON 和 PD 之间先前建立的遗传关联。我们的实验范式有助于突出 mtDNA 单倍群的特征性细微功能差异,这将越来越需要用于解析 mtDNA 遗传变异在健康、疾病和长寿中的作用。