Suppr超能文献

基于 ADMM 的多标签学习的流形正则化矩阵补全

Manifold regularized matrix completion for multi-label learning with ADMM.

机构信息

SMILE Lab, School of Computer Science & Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West Hi-tech Zone, Chengdu 611731, China.

Zhejiang University, 38 Zheda Road, Hangzhou 310058, China.

出版信息

Neural Netw. 2018 May;101:57-67. doi: 10.1016/j.neunet.2018.01.011. Epub 2018 Feb 14.

Abstract

Multi-label learning is a common machine learning problem arising from numerous real-world applications in diverse fields, e.g, natural language processing, bioinformatics, information retrieval and so on. Among various multi-label learning methods, the matrix completion approach has been regarded as a promising approach to transductive multi-label learning. By constructing a joint matrix comprising the feature matrix and the label matrix, the missing labels of test samples are regarded as missing values of the joint matrix. With the low-rank assumption of the constructed joint matrix, the missing labels can be recovered by minimizing its rank. Despite its success, most matrix completion based approaches ignore the smoothness assumption of unlabeled data, i.e., neighboring instances should also share a similar set of labels. Thus they may under exploit the intrinsic structures of data. In addition, the matrix completion problem can be less efficient. To this end, we propose to efficiently solve the multi-label learning problem as an enhanced matrix completion model with manifold regularization, where the graph Laplacian is used to ensure the label smoothness over it. To speed up the convergence of our model, we develop an efficient iterative algorithm, which solves the resulted nuclear norm minimization problem with the alternating direction method of multipliers (ADMM). Experiments on both synthetic and real-world data have shown the promising results of the proposed approach.

摘要

多标签学习是一种常见的机器学习问题,源于自然语言处理、生物信息学、信息检索等众多领域的实际应用。在各种多标签学习方法中,矩阵补全方法被认为是一种很有前途的转导多标签学习方法。通过构建一个包含特征矩阵和标签矩阵的联合矩阵,将测试样本的缺失标签视为联合矩阵的缺失值。在构建的联合矩阵的低秩假设下,可以通过最小化其秩来恢复缺失的标签。尽管取得了成功,但大多数基于矩阵补全的方法忽略了未标记数据的平滑性假设,即相邻实例也应该共享一组相似的标签。因此,它们可能没有充分利用数据的内在结构。此外,矩阵补全问题的效率可能较低。为此,我们提出了一种有效的方法,通过增强的具有流形正则化的矩阵补全模型来解决多标签学习问题,其中使用图拉普拉斯来确保标签在其上的平滑性。为了加快模型的收敛速度,我们开发了一种有效的迭代算法,该算法使用交替方向乘子法(ADMM)解决核范数最小化问题。在合成数据和真实世界数据上的实验表明了所提出方法的有前途的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验