Department of Experimental Medical Science, Basal Ganglia Pathophysiology Unit, Lund University, Lund, Sweden.
University of Manchester, Manchester, UK.
Mov Disord. 2018 Jul;33(6):889-899. doi: 10.1002/mds.27337. Epub 2018 Feb 28.
Understanding the biological mechanisms of l-dopa-induced motor complications is dependent on our ability to investigate these phenomena in animal models of Parkinson's disease. The most common motor complications consist in wearing-off fluctuations and abnormal involuntary movements appearing when plasma levels of l-dopa are high, commonly referred to as peak-dose l-dopa-induced dyskinesia. Parkinsonian models exhibiting these features have been well-characterized in both rodent and nonhuman primate species. The first animal models of peak-dose l-dopa-induced dyskinesia were produced in monkeys lesioned with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and treated chronically with l-dopa to elicit choreic movements and dystonic postures. Seminal studies were performed in these models using both metabolic mapping and electrophysiological techniques, providing fundamental pathophysiological insights that have stood the test of time. A decade later, it was shown possible to reproduce peak-dose l-dopa-induced dyskinesia in rats and mice rendered parkinsonian with nigrostriatal 6-hydroxydopamine lesions. When treated with l-dopa, these animals exhibit abnormal involuntary movements having both hyperkinetic and dystonic components. These models have enabled molecular- and cellular-level investigations into the mechanisms of l-dopa-induced dyskinesia. A flourishing literature using genetically engineered mice is now unraveling the role of specific genes and neural circuits in the development of l-dopa-induced motor complications. Both non-human primate and rodent models of peak-dose l-dopa-induced dyskinesia have excellent construct validity and provide valuable tools for discovering therapeutic targets and evaluating potential treatments. © 2018 International Parkinson and Movement Disorder Society.
理解左旋多巴引起的运动并发症的生物学机制依赖于我们在帕金森病动物模型中研究这些现象的能力。最常见的运动并发症包括当血浆左旋多巴水平高时出现的波动和异常不自主运动,通常称为峰剂量左旋多巴诱导的运动障碍。在啮齿动物和非人灵长类动物中,已经很好地描述了具有这些特征的帕金森模型。首次产生峰剂量左旋多巴诱导的运动障碍的动物模型是在 N-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)损伤的猴子中产生的,并长期用左旋多巴治疗以引起舞蹈运动和扭曲姿势。在这些模型中使用代谢映射和电生理技术进行了开创性的研究,提供了基本的病理生理学见解,这些见解经受住了时间的考验。十年后,证明在黑质纹状体 6-羟多巴胺损伤的帕金森病大鼠和小鼠中可以重现峰剂量左旋多巴诱导的运动障碍。当用左旋多巴治疗时,这些动物表现出具有运动过度和扭曲成分的异常不自主运动。这些模型使我们能够进行分子和细胞水平的左旋多巴诱导运动障碍机制研究。使用基因工程小鼠的蓬勃发展的文献现在正在揭示特定基因和神经回路在左旋多巴诱导运动并发症发展中的作用。峰剂量左旋多巴诱导的运动障碍的非人类灵长类动物和啮齿动物模型具有极好的结构有效性,并为发现治疗靶点和评估潜在治疗方法提供了有价值的工具。国际帕金森病和运动障碍学会 2018 年。